文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

母体粪便微生物群移植中补充菊粉对雏鸡早期生长的影响。

Effect of inulin supplementation in maternal fecal microbiota transplantation on the early growth of chicks.

作者信息

Chen Mengxian, Pan Junxing, Song Yang, Liu Shenao, Sun Peng, Zheng Xin

机构信息

College of Animal Science and Technology, Jilin Agricultural University, No. 2888 Xincheng Road, Nanguan District, Changchun, 130118, China.

Key Laboratory of Animal Production, Product Quality and Security (Jilin Agricultural University), Ministry of Education, Changchun, 130118, China.

出版信息

Microbiome. 2025 Apr 15;13(1):98. doi: 10.1186/s40168-025-02084-z.


DOI:10.1186/s40168-025-02084-z
PMID:40235010
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11998286/
Abstract

BACKGROUND: Fecal microbial transplantation (FMT) is an important technology for treating diarrhea and enteritis. Additionally, FMT has been applied to improve productivity, alter abnormal behavior, relieve stress, and reduce burdens. However, some previous studies have reported that FMT may cause stress in acceptor animals. Inulin, a prebiotic, can promote growth, enhance immunity, and balance the gut microbiota. Currently, there are limited reports on the effects of combining FMT with inulin on early growth performance in chicks. RESULTS: In this study, a total of 90 1-day-old chicks were randomly divided into the control group (CON), FMT group, and inulin group (INU). The CON group was fed a basic diet, whereas the FMT and INU groups received fecal microbiota transplantation and FMT with inulin treatment, respectively. Compared with the FMT and CON groups, the INU group presented significantly greater average daily gain (ADG) and average daily feed intake (ADFI) values (P < 0.05). However, the organ indices did not significantly change (P > 0.05). The ratio of the villi to crypts in the ileum significantly differed at 21 and 35 days (P < 0.05). In addition, the cecum concentrations of acetic acid and butyric acid significantly increased in the INU group (P < 0.05). In addition, gut inflammation and serum inflammation decreased in the INU group, and immune factors increased after inulin supplementation. (P < 0.05). Firmicutes and Bacteroidetes were the dominant phyla, with more than 90% of all sequences being identified as originating from these two phyla. Inulin supplementation during mother-sourced microbial transplantation significantly increased the abundance of Rikenella, Butyricicoccus, and [Ruminococcus], which contributed positively to the promotion of early intestinal health and facilitated the early growth of chicks. CONCLUSION: The results of this study suggest that inulin supplementation in maternal fecal microbiota transplantation can effectively promote early growth and probiotic colonization, which favors the health of chicks. Video Abstract.

摘要

背景:粪便微生物移植(FMT)是治疗腹泻和肠炎的一项重要技术。此外,FMT已被应用于提高生产力、改变异常行为、缓解应激和减轻负担。然而,先前一些研究报道FMT可能会给受体动物造成应激。菊粉作为一种益生元,可促进生长、增强免疫力并平衡肠道微生物群。目前,关于FMT与菊粉联合应用对雏鸡早期生长性能影响的报道较少。 结果:本研究中,共90只1日龄雏鸡被随机分为对照组(CON)、FMT组和菊粉组(INU)。CON组饲喂基础日粮,而FMT组和INU组分别接受粪便微生物移植以及粪便微生物移植联合菊粉处理。与FMT组和CON组相比,INU组的平均日增重(ADG)和平均日采食量(ADFI)值显著更高(P < 0.05)。然而,器官指数没有显著变化(P > 0.05)。在21日龄和35日龄时,回肠绒毛与隐窝的比例存在显著差异(P < 0.05)。此外,INU组盲肠中乙酸和丁酸的浓度显著升高(P < 0.05)。另外,INU组肠道炎症和血清炎症减轻,补充菊粉后免疫因子增加(P < 0.05)。厚壁菌门和拟杆菌门是主要菌门,所有序列中超过90%被鉴定为源自这两个菌门。在母体来源的微生物移植过程中补充菊粉显著增加了理研菌属、丁酸球菌属和瘤胃球菌属的丰度,这对促进早期肠道健康和雏鸡早期生长有积极作用。 结论:本研究结果表明,在母体粪便微生物移植中补充菊粉可有效促进雏鸡早期生长和益生菌定植,有利于雏鸡健康。视频摘要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/ff2c4a2cce8e/40168_2025_2084_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/cd1beba4d90d/40168_2025_2084_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/42afb9e4ade4/40168_2025_2084_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/1b2eb6962f54/40168_2025_2084_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/9449cdb105a6/40168_2025_2084_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/1ba05337a1fe/40168_2025_2084_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/2104c1114dde/40168_2025_2084_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/56633b2da134/40168_2025_2084_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/cfbcfff7226e/40168_2025_2084_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/809d377a8cd0/40168_2025_2084_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/68d75eb84009/40168_2025_2084_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/2a3492855aad/40168_2025_2084_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/d1d17eb96099/40168_2025_2084_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/ff2c4a2cce8e/40168_2025_2084_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/cd1beba4d90d/40168_2025_2084_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/42afb9e4ade4/40168_2025_2084_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/1b2eb6962f54/40168_2025_2084_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/9449cdb105a6/40168_2025_2084_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/1ba05337a1fe/40168_2025_2084_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/2104c1114dde/40168_2025_2084_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/56633b2da134/40168_2025_2084_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/cfbcfff7226e/40168_2025_2084_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/809d377a8cd0/40168_2025_2084_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/68d75eb84009/40168_2025_2084_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/2a3492855aad/40168_2025_2084_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/d1d17eb96099/40168_2025_2084_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/35d3/11998286/ff2c4a2cce8e/40168_2025_2084_Fig13_HTML.jpg

相似文献

[1]
Effect of inulin supplementation in maternal fecal microbiota transplantation on the early growth of chicks.

Microbiome. 2025-4-15

[2]
Improvement of Feed Efficiency in Pigs through Microbial Modulation via Fecal Microbiota Transplantation in Sows and Dietary Supplementation of Inulin in Offspring.

Appl Environ Microbiol. 2019-10-30

[3]
Donor selection for fecal bacterial transplantation and its combined effects with inulin on early growth and ileal development in chicks.

J Appl Microbiol. 2023-5-2

[4]
Fecal microbiota transplantation combined with inulin promotes the development and function of early immune organs in chicks.

J Biotechnol. 2025-3

[5]
Effects of faecal microbiota transplantation supplemented with inulin on early immunity and immune organ histomorphology in chickens.

Br Poult Sci. 2025-3-12

[6]
Effects of dietary inulin supplementation on the composition and dynamics of cecal microbiota and growth-related parameters in broiler chickens.

Poult Sci. 2019-12-1

[7]
The effect and potential mechanism of inulin combined with fecal microbiota transplantation on early intestinal immune function in chicks.

Sci Rep. 2024-7-23

[8]
Fecal virus transplantation has more moderate effect than fecal microbiota transplantation on changing gut microbial structure in broiler chickens.

Poult Sci. 2024-2

[9]
Effects of dietary inulin supplementation on growth performance, intestinal barrier integrity and microbial populations in weaned pigs.

Br J Nutr. 2020-3-27

[10]
Synergetic responses of intestinal microbiota and epithelium to dietary inulin supplementation in pigs.

Eur J Nutr. 2021-3

引用本文的文献

[1]
Fecal Virome Transplantation Confirms Non-Bacterial Components (Virome and Metabolites) Participate in Fecal Microbiota Transplantation-Mediated Growth Performance Enhancement and Intestinal Development in Broilers with Spatial Heterogeneity.

Microorganisms. 2025-7-31

[2]
Correction: Effect of inulin supplementation in maternal fecal microbiota transplantation on the early growth of chicks.

Microbiome. 2025-6-3

本文引用的文献

[1]
Gut microbiota absence and transplantation affect diarrhea: an investigation in the germ-free piglet model.

Anim Biotechnol. 2023-12

[2]
Fecal Microbiota Transplantation Reduces Colonization in Young Broiler Chickens Challenged by Oral Gavage but Not by Seeder Birds.

Antibiotics (Basel). 2023-10-2

[3]
Donor selection for fecal bacterial transplantation and its combined effects with inulin on early growth and ileal development in chicks.

J Appl Microbiol. 2023-5-2

[4]
Implications of gut microbiota dysbiosis and fecal metabolite changes in psychologically stressed mice.

Front Microbiol. 2023-5-5

[5]
Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race.

Int J Mol Sci. 2023-3-17

[6]
Early life microbiota transplantation from highly feed-efficient broiler improved weight gain by reshaping the gut microbiota in laying chicken.

Front Microbiol. 2022-11-18

[7]
The role of the gut microbiome in colonization resistance and recurrent infection.

Therap Adv Gastroenterol. 2022-11-18

[8]
Effects of fecal microbiota transplantation from yaks on weaning diarrhea, fecal microbiota composition, microbial network structure and functional pathways in Chinese Holstein calves.

Front Microbiol. 2022-9-23

[9]
The functional role of fecal microbiota transplantation on Salmonella Enteritidis infection in chicks.

Vet Microbiol. 2022-6

[10]
Modulation of intestine development by fecal microbiota transplantation in suckling pigs.

RSC Adv. 2018-2-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索