Suppr超能文献

利用数据马拉松在本科医学教育中教授人工智能:案例研究

Leveraging Datathons to Teach AI in Undergraduate Medical Education: Case Study.

作者信息

Yao Michael Steven, Huang Lawrence, Leventhal Emily, Sun Clara, Stephen Steve J, Liou Lathan

机构信息

Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.

Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States.

出版信息

JMIR Med Educ. 2025 Apr 16;11:e63602. doi: 10.2196/63602.

Abstract

BACKGROUND

As artificial intelligence and machine learning become increasingly influential in clinical practice, it is critical for future physicians to understand how such novel technologies will impact the delivery of patient care.

OBJECTIVE

We describe 2 trainee-led, multi-institutional datathons as an effective means of teaching key data science and machine learning skills to medical trainees. We offer key insights on the practical implementation of such datathons and analyze experiences gained and lessons learned for future datathon initiatives.

METHODS

We detail 2 recent datathons organized by MDplus, a national trainee-led nonprofit organization. To assess the efficacy of the datathon as an educational experience, an opt-in postdatathon survey was sent to all registered participants. Survey responses were deidentified and anonymized before downstream analysis to assess the quality of datathon experiences and areas for future work.

RESULTS

Our digital datathons between 2023 and 2024 were attended by approximately 200 medical trainees across the United States. A diverse array of medical specialty interests was represented among participants, with 43% (21/49) of survey participants expressing an interest in internal medicine, 35% (17/49) in surgery, and 22% (11/49) in radiology. Participant skills in leveraging Python for analyzing medical datasets improved after the datathon, and survey respondents enjoyed participating in the datathon.

CONCLUSIONS

The datathon proved to be an effective and cost-effective means of providing medical trainees the opportunity to collaborate on data-driven projects in health care. Participants agreed that datathons improved their ability to generate clinically meaningful insights from data. Our results suggest that datathons can serve as valuable and effective educational experiences for medical trainees to become better skilled in leveraging data science and artificial intelligence for patient care.

摘要

背景

随着人工智能和机器学习在临床实践中的影响力日益增强,对于未来的医生来说,理解这些新技术将如何影响患者护理的提供至关重要。

目的

我们描述了两次由学员主导的多机构数据马拉松,作为向医学学员传授关键数据科学和机器学习技能的有效手段。我们提供了关于此类数据马拉松实际实施的关键见解,并分析了从这些活动中获得的经验以及为未来数据马拉松活动吸取的教训。

方法

我们详细介绍了由全国学员主导的非营利组织MDplus组织的两次近期数据马拉松。为了评估数据马拉松作为一种教育体验的效果,我们向所有注册参与者发送了一份自愿参与的马拉松后调查问卷。在进行下游分析之前,对调查问卷的回复进行了去识别和匿名处理,以评估数据马拉松体验的质量和未来工作的方向。

结果

2023年至2024年期间,我们的数字数据马拉松吸引了来自美国各地约200名医学学员参加。参与者代表了各种各样的医学专业兴趣,43%(21/49)的调查参与者表示对内科学感兴趣,35%(17/49)对外科学感兴趣,22%(11/49)对放射学感兴趣。在数据马拉松之后,参与者利用Python分析医学数据集的技能有所提高,调查受访者也很享受参与数据马拉松的过程。

结论

事实证明,数据马拉松是一种有效且具有成本效益的方式,能够为医学学员提供机会,让他们在医疗保健领域的数据驱动项目中进行合作。参与者一致认为,数据马拉松提高了他们从数据中生成具有临床意义见解的能力。我们的结果表明,数据马拉松可以作为有价值且有效的教育体验,帮助医学学员在利用数据科学和人工智能进行患者护理方面提高技能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/478f/12017604/cdad65d68ef3/mededu-v11-e63602-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验