Suppr超能文献

基于深度学习的扩散加权磁共振成像对脑梗死的自动分割

Deep learning-based automatic segmentation of cerebral infarcts on diffusion MRI.

作者信息

Ryu Wi-Sun, Schellingerhout Dawid, Park Jonghyeok, Chung Jinyong, Jeong Sang-Wuk, Gwak Dong-Seok, Kim Beom Joon, Kim Joon-Tae, Hong Keun-Sik, Lee Kyung Bok, Park Tai Hwan, Park Sang-Soon, Park Jong-Moo, Kang Kyusik, Cho Yong-Jin, Park Hong-Kyun, Lee Byung-Chul, Yu Kyung-Ho, Oh Mi Sun, Lee Soo Joo, Kim Jae Guk, Cha Jae-Kwan, Kim Dae-Hyun, Lee Jun, Park Man Seok, Kim Dongmin, Bang Oh Young, Kim Eung Yeop, Sohn Chul-Ho, Kim Hosung, Bae Hee-Joon, Kim Dong-Eog

机构信息

Artificial Intelligence Research Center, JLK Inc., Seoul, South Korea.

National Priority Research Center for Stroke and Department of Neurology, Dongguk University Ilsan Hospital, 27, Dongguk-ro, Ilsandong-gu, Goyang, South Korea.

出版信息

Sci Rep. 2025 Apr 16;15(1):13214. doi: 10.1038/s41598-025-91032-w.

Abstract

We explored effects of (1) training with various sample sizes of multi-site vs. single-site training data, (2) cross-site domain adaptation, and (3) data sources and features on the performance of algorithms segmenting cerebral infarcts on Magnetic Resonance Imaging (MRI). We used 10,820 annotated diffusion-weighted images (DWIs) from 10 university hospitals. Algorithms based on 3D U-net were trained using progressively larger subsamples (ranging from 217 to 8661), while internal testing employed a distinct set of 2159 DWIs. External validation was conducted using three unrelated datasets (n = 2777, 50, and 250). For domain adaptation, we utilized 50 to 1000 subsamples from the 2777-image external target dataset. As the size of the multi-site training data increased from 217 to 1732, the Dice similarity coefficient (DSC) and average Hausdorff distance (AHD) improved from 0.58 to 0.65 and from 16.1 to 3.75 mm, respectively. Further increases in sample size to 4330 and 8661 led to marginal gains in DSC (to 0.68 and 0.70, respectively) and in AHD (to 2.92 and 1.73). Similar outcomes were observed in external testing. Notably, performance was relatively poor for segmenting brainstem or hyperacute (< 3 h) infarcts. Domain adaptation, even with a small subsample (n = 50) of external data, conditioned the algorithm trained with 217 images to perform comparably to an algorithm trained with 8661 images. In conclusion, the use of multi-site data (approximately 2000 DWIs) and domain adaptation significantly enhances the performance and generalizability of deep learning algorithms for infarct segmentation.

摘要

我们探究了以下因素对磁共振成像(MRI)脑梗死分割算法性能的影响:(1)使用不同样本量的多中心与单中心训练数据进行训练;(2)跨中心域适应;(3)数据来源和特征。我们使用了来自10所大学医院的10820张带注释的扩散加权图像(DWI)。基于3D U-net的算法使用逐渐增大的子样本(范围从217到8661)进行训练,而内部测试使用一组不同的2159张DWI。外部验证使用了三个不相关的数据集(n = 2777、50和250)。对于域适应,我们从2777图像的外部目标数据集中使用了50到1000个子样本。随着多中心训练数据量从217增加到1732,骰子相似系数(DSC)和平均豪斯多夫距离(AHD)分别从0.58提高到0.65,从16.1毫米提高到3.75毫米。样本量进一步增加到4330和8661时,DSC(分别提高到0.68和0.70)和AHD(分别提高到2.92和1.73)有小幅提升。在外部测试中也观察到了类似结果。值得注意的是,在分割脑干或超急性(<3小时)梗死灶时性能相对较差。即使使用少量(n = 50)外部数据的子样本进行域适应,也能使使用217张图像训练的算法表现得与使用8661张图像训练的算法相当。总之,使用多中心数据(约2000张DWI)和域适应可显著提高深度学习算法在梗死灶分割方面的性能和泛化能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d75a/12003832/45db346075fc/41598_2025_91032_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验