Suppr超能文献

Ftl-CoV19:一种用于检测 COVID-19 的迁移学习方法。

Ftl-CoV19: A Transfer Learning Approach to Detect COVID-19.

机构信息

Mody University of Science and Technology, Lachhmangarh, Rajasthan, India.

Madhav Institute of Technology and Sciences, Gwalior, Madhya Pradesh, India.

出版信息

Comput Intell Neurosci. 2022 Jul 5;2022:1953992. doi: 10.1155/2022/1953992. eCollection 2022.

Abstract

COVID-19 is an infectious and contagious disease caused by the new coronavirus. The total number of cases is over 19 million and continues to grow. A common symptom noticed among COVID-19 patients is lung infection that results in breathlessness, and the lack of essential resources such as testing, oxygen, and ventilators enhances its severity. Chest X-ray can be used to design and develop a COVID-19 detection mechanism for a quicker diagnosis using AI and machine learning techniques. Due to this silver lining, various new COVID-19 detection techniques and prediction models have been introduced in recent times based on chest radiography images. However, due to a high level of unpredictability and the absence of essential data, standard models have showcased low efficiency and also suffer from overheads and complexities. This paper proposes a model fine tuning transfer learning-coronavirus 19 (Ftl-CoV19) for COVID-19 detection through chest X-rays, which embraces the ideas of transfer learning in pretrained VGG16 model with including combination of convolution, max pooling, and dense layer at different stages of model. Ftl-CoV19 reported promising experimental results; it observed training and validation accuracy of 98.82% and 99.27% with precision of 100%, recall of 98%, and F1 score of 99%. These results outperformed other conventional state of arts such as CNN, ResNet50, InceptionV3, and Xception.

摘要

COVID-19 是一种由新型冠状病毒引起的传染性和接触性疾病。总病例数超过 1900 万,并在持续增长。COVID-19 患者常见的症状是肺部感染,导致呼吸困难,缺乏检测、氧气和呼吸机等基本资源会使其病情加重。胸部 X 光片可用于设计和开发 COVID-19 检测机制,使用 AI 和机器学习技术进行更快的诊断。由于这一有利条件,最近根据胸部射线图像引入了各种新的 COVID-19 检测技术和预测模型。然而,由于高度的不可预测性和缺乏基本数据,标准模型展示了低效率,并且还存在开销和复杂性的问题。本文提出了一种通过胸部 X 射线进行 COVID-19 检测的模型微调迁移学习-冠状病毒 19(Ftl-CoV19),该模型在预训练的 VGG16 模型中采用了迁移学习的思想,在模型的不同阶段结合了卷积、最大池化和密集层。Ftl-CoV19 报告了有前途的实验结果;它观察到训练和验证的准确率分别为 98.82%和 99.27%,精度为 100%,召回率为 98%,F1 得分为 99%。这些结果优于其他传统的状态艺术,如 CNN、ResNet50、InceptionV3 和 Xception。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b18/9295614/a0b4e217dfeb/CIN2022-1953992.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验