Suppr超能文献

通过统计和机器学习模型预测临床试验持续时间。

Predicting clinical trial duration via statistical and machine learning models.

作者信息

Cho Joonhyuk, Xu Qingyang, Wong Chi Heem, Lo Andrew W

机构信息

MIT Laboratory for Financial Engineering, Cambridge, MA, USA.

MIT Department of Electrical Engineering and Computer Science, Cambridge, MA, USA.

出版信息

Contemp Clin Trials Commun. 2025 Mar 31;45:101473. doi: 10.1016/j.conctc.2025.101473. eCollection 2025 Jun.

Abstract

We apply survival analysis as well as machine learning models to predict the duration of clinical trials using the largest dataset so far constructed in this domain. Neural network-based DeepSurv yields the most accurate predictions and we identify key factors that are most predictive of trial duration. This methodology may help clinical researchers optimize trial designs for expedited testing, and can also reduce the financial risk of drug development, which in turn will lower the cost of funding and increase the amount of capital allocated to this sector.

摘要

我们应用生存分析以及机器学习模型,使用该领域迄今构建的最大数据集来预测临床试验的持续时间。基于神经网络的DeepSurv产生了最准确的预测结果,并且我们确定了对试验持续时间最具预测性的关键因素。这种方法可能有助于临床研究人员优化试验设计以加快测试速度,还可以降低药物开发的财务风险,进而降低资金成本并增加分配给该领域的资金量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/761d/12005917/5f826d912721/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验