Suppr超能文献

整合拟南芥和作物物种的基因发现以促进作物改良。

Integrating Arabidopsis and crop species gene discovery for crop improvement.

作者信息

Bevan Michael W, Messerer Maxim, Gundlach Heidrun, Kamal Nadia, Hall Anthony, Spannagl Manuel, Mayer Klaus F X

机构信息

Cell and Developmental Biology Dept, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.

Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.

出版信息

Plant Cell. 2025 May 9;37(5). doi: 10.1093/plcell/koaf087.

Abstract

Genome sequence assemblies form a durable and precise framework supporting nearly all areas of biological research, including evolutionary biology, taxonomy and conservation science, pathogen population diversity, crop domestication, and biochemistry. In the early days of plant genomics, resources were limited to a handful of tractable genomes, leading to a tension between focus on discovering mechanisms in experimental species such as Arabidopsis thaliana (Arabidopsis) and on trait analyses in crop species. This tension arose from challenges in translating knowledge of gene function across the large evolutionary distances between Arabidopsis and diverse crop species in the absence of comparative genome support. For some time, these clashing interests influenced funding priorities in plant science that limited both the acquisition of knowledge of mechanisms in Arabidopsis and the timely development of the capacity of crop science to incorporate emerging knowledge of genes and their mechanisms. In this review we show how advances in genomics analysis technologies are revealing a high degree of conservation of molecular mechanisms between evolutionarily distant plant species. This progress is bridging the model-species-to-crop barrier, resulting in ever-increasing unification of plant science that is now accelerating progress in understanding mechanisms underlying diverse traits in crops and improving their performance. We lay out some examples of important priorities and outcomes arising from these new opportunities.

摘要

基因组序列组装形成了一个持久而精确的框架,支持几乎所有生物学研究领域,包括进化生物学、分类学和保护科学、病原体种群多样性、作物驯化以及生物化学。在植物基因组学的早期,资源仅限于少数易于处理的基因组,这导致了在专注于发现拟南芥等实验物种中的机制与作物物种的性状分析之间的紧张关系。这种紧张关系源于在缺乏比较基因组支持的情况下,在跨越拟南芥与各种作物物种之间巨大进化距离来转化基因功能知识时所面临的挑战。一段时间以来,这些相互冲突的利益影响了植物科学的资金优先事项,既限制了对拟南芥中机制知识的获取,也限制了作物科学及时发展以纳入新出现的基因及其机制知识的能力。在这篇综述中,我们展示了基因组学分析技术的进展如何揭示进化上遥远的植物物种之间分子机制的高度保守性。这一进展正在跨越从模式物种到作物的障碍,导致植物科学日益统一,现在正加速在理解作物各种性状背后的机制以及提高其性能方面的进展。我们列举了一些源于这些新机遇的重要优先事项和成果的例子。

相似文献

8
Stigma Management Strategies of Autistic Social Media Users.自闭症社交媒体用户的污名管理策略
Autism Adulthood. 2025 May 28;7(3):273-282. doi: 10.1089/aut.2023.0095. eCollection 2025 Jun.

本文引用的文献

8
Unlocking plant genetics with telomere-to-telomere genome assemblies.端粒到端粒基因组组装解锁植物遗传学。
Nat Genet. 2024 Sep;56(9):1788-1799. doi: 10.1038/s41588-024-01830-7. Epub 2024 Jul 24.
9
Bridge RNAs direct programmable recombination of target and donor DNA.桥 RNA 指导靶 DNA 和供体 DNA 的可编程重组。
Nature. 2024 Jun;630(8018):984-993. doi: 10.1038/s41586-024-07552-4. Epub 2024 Jun 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验