Kim Jun Seo, Lee Jeong Hoon, Yeon Yousung, An Doyeon, Kim Seok Jun, Noh Myung-Giun, Lee Suehyun
Department of Computer Engineering, Gachon University, Seongnam, 13120, South Korea.
Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
Breast Cancer Res. 2025 Apr 19;27(1):58. doi: 10.1186/s13058-025-02019-4.
The Nottingham histologic grade is crucial for assessing severity and predicting prognosis in breast cancer, a prevalent cancer worldwide. Traditional grading systems rely on subjective expert judgment and require extensive pathological expertise, are time-consuming, and often lead to inter-observer variability.
To address these limitations, we develop an AI-based model to predict Nottingham grade from whole-slide images of hematoxylin and eosin (H&E)-stained breast cancer tissue using a pathology foundation model. From TCGA database, we trained and evaluated using 521 H&E breast cancer slide images with available Nottingham scores through internal split validation, and further validated its clinical utility using an additional set of 597 cases without Nottingham scores. The model leveraged deep features extracted from a pathology foundation model (UNI) and incorporated 14 distinct multiple instance learning (MIL) algorithms.
The best-performing model achieved an F1 score of 0.731 and a multiclass average AUC of 0.835. The top 300 genes correlated with model predictions were significantly enriched in pathways related to cell division and chromosome segregation, supporting the model's biological relevance. The predicted grades demonstrated statistically significant association with 5-year overall survival (p < 0.05).
Our AI-based automated Nottingham grading system provides an efficient and reproducible tool for breast cancer assessment, offering potential for standardization of histologic grade in clinical practice.
诺丁汉组织学分级对于评估乳腺癌(一种全球常见的癌症)的严重程度和预测预后至关重要。传统的分级系统依赖主观的专家判断,需要广泛的病理学专业知识,耗时且常常导致观察者间的差异。
为解决这些局限性,我们开发了一种基于人工智能的模型,使用病理学基础模型从苏木精和伊红(H&E)染色的乳腺癌组织全切片图像预测诺丁汉分级。从TCGA数据库中,我们通过内部拆分验证,使用521张具有可用诺丁汉评分的H&E乳腺癌幻灯片图像进行训练和评估,并使用另外一组597例无诺丁汉评分的病例进一步验证其临床实用性。该模型利用从病理学基础模型(UNI)中提取的深度特征,并纳入了14种不同的多实例学习(MIL)算法。
表现最佳的模型F1评分为0.731,多类平均AUC为0.835。与模型预测相关的前300个基因在与细胞分裂和染色体分离相关的通路中显著富集,支持了该模型的生物学相关性。预测分级与5年总生存率显示出统计学上的显著关联(p < 0.05)。
我们基于人工智能的自动化诺丁汉分级系统为乳腺癌评估提供了一种高效且可重复的工具,为临床实践中组织学分级的标准化提供了潜力。