Jaroensri Ronnachai, Wulczyn Ellery, Hegde Narayan, Brown Trissia, Flament-Auvigne Isabelle, Tan Fraser, Cai Yuannan, Nagpal Kunal, Rakha Emad A, Dabbs David J, Olson Niels, Wren James H, Thompson Elaine E, Seetao Erik, Robinson Carrie, Miao Melissa, Beckers Fabien, Corrado Greg S, Peng Lily H, Mermel Craig H, Liu Yun, Steiner David F, Chen Po-Hsuan Cameron
Google Health, Palo Alto, CA, USA.
Work done at Google Health via Vituity, Emeryville, CA, USA.
NPJ Breast Cancer. 2022 Oct 4;8(1):113. doi: 10.1038/s41523-022-00478-y.
Histologic grading of breast cancer involves review and scoring of three well-established morphologic features: mitotic count, nuclear pleomorphism, and tubule formation. Taken together, these features form the basis of the Nottingham Grading System which is used to inform breast cancer characterization and prognosis. In this study, we develop deep learning models to perform histologic scoring of all three components using digitized hematoxylin and eosin-stained slides containing invasive breast carcinoma. We first evaluate model performance using pathologist-based reference standards for each component. To complement this typical approach to evaluation, we further evaluate the deep learning models via prognostic analyses. The individual component models perform at or above published benchmarks for algorithm-based grading approaches, achieving high concordance rates with pathologist grading. Further, prognostic performance using deep learning-based grading is on par with that of pathologists performing review of matched slides. By providing scores for each component feature, the deep-learning based approach also provides the potential to identify the grading components contributing most to prognostic value. This may enable optimized prognostic models, opportunities to improve access to consistent grading, and approaches to better understand the links between histologic features and clinical outcomes in breast cancer.
有丝分裂计数、核多形性和小管形成。这些特征共同构成了诺丁汉分级系统的基础,该系统用于描述乳腺癌的特征并预测预后。在本研究中,我们开发了深度学习模型,使用包含浸润性乳腺癌的数字化苏木精和伊红染色切片,对所有三个组成部分进行组织学评分。我们首先使用基于病理学家的各组成部分参考标准来评估模型性能。为补充这种典型的评估方法,我们通过预后分析进一步评估深度学习模型。各个组成部分模型的表现达到或超过了基于算法的分级方法已发表的基准,与病理学家的分级具有高度一致性。此外,基于深度学习分级的预后性能与对匹配切片进行评估的病理学家相当。通过为每个组成部分特征提供分数,基于深度学习的方法还具有识别对预后价值贡献最大的分级组成部分的潜力。这可能有助于建立优化的预后模型,提供改善获得一致分级的机会,并有助于更好地理解乳腺癌组织学特征与临床结果之间的联系。