Suppr超能文献

利用非水肿性脂肪组织的标注开发多尺度3D残差U-Net以分割水肿性脂肪组织

Development of Multiscale 3D Residual U-Net to Segment Edematous Adipose Tissue by Leveraging Annotations from Non-Edematous Adipose Tissue.

作者信息

Liu Jianfei, Shafaat Omid, Summers Ronald M

机构信息

Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD, United States.

出版信息

Proc SPIE Int Soc Opt Eng. 2023 Nov;12567. doi: 10.1117/12.2669719. Epub 2023 Mar 6.

Abstract

Data annotation is often a prerequisite for applying deep learning to medical image segmentation. It is a tedious process that requires substantial guidance from experienced physicians. Adipose tissue labeling on CT scans is particularly time-consuming because adipose tissue is present throughout the entire body. One possible solution is to create inaccurate annotations from conventional (non-deep learning) adipose tissue segmentation methods. This work demonstrates the development of a deep learning model directly from these inaccurate annotations. The model is a multi-scale 3D residual U-Net where the encoder path is composed of residual blocks and the decoder path fuses multi-scale feature maps from different layers of decoder blocks. The training set consisted of 101 patients and the testing set consisted of 14 patients. Ten patients with anasarca were purposely added to the testing dataset as a stress test to evaluate model generality. Anasarca is a medical condition that leads to the generalized accumulation of edema within subcutaneous adipose tissue. Edema creates heterogeneity inside the adipose tissue which is absent in the training data. In comparison with a baseline method of manual annotations, the Dice coefficient improved significantly from 73.4 ± 14.1% to 80.2 ± 7.1% ( < 0.05). The model trained on inaccurate annotations improved the accuracy of adipose tissue segmentation by 7% without the need for any manual annotation.

摘要

数据标注通常是将深度学习应用于医学图像分割的前提条件。这是一个繁琐的过程,需要经验丰富的医生给予大量指导。在CT扫描上进行脂肪组织标记特别耗时,因为脂肪组织遍布全身。一种可能的解决方案是从传统(非深度学习)脂肪组织分割方法创建不准确的标注。这项工作展示了直接从这些不准确的标注开发深度学习模型的过程。该模型是一个多尺度3D残差U-Net,其中编码器路径由残差块组成,解码器路径融合了解码器块不同层的多尺度特征图。训练集由101名患者组成,测试集由14名患者组成。特意将10名患有全身性水肿的患者添加到测试数据集中作为压力测试,以评估模型的通用性。全身性水肿是一种导致皮下脂肪组织内普遍积聚水肿的病症。水肿会在脂肪组织内部产生异质性,而这在训练数据中是不存在的。与手动标注的基线方法相比,Dice系数从73.4±14.1%显著提高到80.2±7.1%(<0.05)。在不准确标注上训练的模型在无需任何手动标注的情况下将脂肪组织分割的准确率提高了7%。

相似文献

本文引用的文献

1
Deep Neural Networks for Medical Image Segmentation.深度学习在医学图像分割中的应用。
J Healthc Eng. 2022 Mar 10;2022:9580991. doi: 10.1155/2022/9580991. eCollection 2022.
3
Deep learning for abdominal adipose tissue segmentation with few labelled samples.基于少量标注样本的腹部脂肪组织分割的深度学习。
Int J Comput Assist Radiol Surg. 2022 Mar;17(3):579-587. doi: 10.1007/s11548-021-02533-8. Epub 2021 Nov 29.
8
Intravascular Lymphoma as an Uncommon Cause of Anasarca.血管内淋巴瘤是全身性水肿的罕见病因。
Eur J Case Rep Intern Med. 2016 Jun 29;3(5):000424. doi: 10.12890/2016_000424. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验