Bhadra Sayantan, Liu Jianfei, Summers Ronald M
Imaging Biomarkers and Computer-Aided Diagnosis Laboratory, Radiology and Imaging Sciences, National Institutes of Health Clinical Center, Bethesda, USA.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12927. doi: 10.1117/12.3008793. Epub 2024 Apr 3.
Volumetric assessment of edema due to anasarca can help monitor the progression of diseases such as kidney, liver or heart failure. The ability to measure edema non-invasively by automatic segmentation from abdominal CT scans may be of clinical importance. The current state-of-the-art method for edema segmentation using intensity priors is susceptible to false positives or under-segmentation errors. The application of modern supervised deep learning methods for 3D edema segmentation is limited due to challenges in manual annotation of edema. In the absence of accurate 3D annotations of edema, we propose a weakly supervised learning method that uses edema segmentations produced by intensity priors as pseudo-labels, along with pseudo-labels of muscle, subcutaneous and visceral adipose tissues for context, to produce more refined segmentations with demonstrably lower segmentation errors. The proposed method employs nnU-Nets in multiple stages to produce the final edema segmentation. The results demonstrate the potential of weakly supervised learning using edema and tissue pseudo-labels in improved quantification of edema for clinical applications.
对全身性水肿引起的水肿进行容积评估有助于监测肾脏、肝脏或心力衰竭等疾病的进展。通过腹部CT扫描自动分割以非侵入性方式测量水肿的能力可能具有临床重要性。当前使用强度先验进行水肿分割的最先进方法容易出现假阳性或分割不足错误。由于水肿的手动标注存在挑战,现代监督深度学习方法在3D水肿分割中的应用受到限制。在缺乏准确的水肿3D标注的情况下,我们提出一种弱监督学习方法,该方法使用强度先验产生的水肿分割作为伪标签,以及肌肉、皮下和内脏脂肪组织的伪标签作为背景信息,以产生分割误差明显更低的更精细分割。所提出的方法在多个阶段使用nnU-Net来生成最终的水肿分割。结果证明了使用水肿和组织伪标签的弱监督学习在改善临床应用中水肿量化方面的潜力。