Suppr超能文献

相似文献

1
Deep Learning-based Quantification of Abdominal Subcutaneous and Visceral Fat Volume on CT Images.
Acad Radiol. 2021 Nov;28(11):1481-1487. doi: 10.1016/j.acra.2020.07.010. Epub 2020 Aug 6.
3
CAFT: a deep learning-based comprehensive abdominal fat analysis tool for large cohort studies.
MAGMA. 2022 Apr;35(2):205-220. doi: 10.1007/s10334-021-00946-9. Epub 2021 Aug 2.
4
7
Deep neural network for automatic volumetric segmentation of whole-body CT images for body composition assessment.
Clin Nutr. 2021 Aug;40(8):5038-5046. doi: 10.1016/j.clnu.2021.06.025. Epub 2021 Jul 15.
8
Automatic intra-subject registration-based segmentation of abdominal fat from water-fat MRI.
J Magn Reson Imaging. 2013 Feb;37(2):423-30. doi: 10.1002/jmri.23813. Epub 2012 Sep 25.
10
An effective automatic segmentation of abdominal adipose tissue using a convolution neural network.
Diabetes Metab Syndr. 2022 Sep;16(9):102589. doi: 10.1016/j.dsx.2022.102589. Epub 2022 Aug 10.

引用本文的文献

2
Improved muscle and fat segmentation for body composition measures on quantitative CT.
Int J Comput Assist Radiol Surg. 2025 Jul 1. doi: 10.1007/s11548-025-03466-2.
4
Evolving perspectives on evaluating obesity: from traditional methods to cutting-edge techniques.
Ann Med. 2025 Dec;57(1):2472856. doi: 10.1080/07853890.2025.2472856. Epub 2025 Mar 12.
5
Current approach to the diagnosis of sarcopenia in cardiovascular diseases.
Front Nutr. 2024 Nov 15;11:1422663. doi: 10.3389/fnut.2024.1422663. eCollection 2024.
6
Weakly supervised learning for subcutaneous edema segmentation of abdominal CT using pseudo-labels and multi-stage nnU-Nets.
Proc SPIE Int Soc Opt Eng. 2024 Feb;12927. doi: 10.1117/12.3008793. Epub 2024 Apr 3.
8
SAROS: A dataset for whole-body region and organ segmentation in CT imaging.
Sci Data. 2024 May 10;11(1):483. doi: 10.1038/s41597-024-03337-6.
9
Improved subcutaneous edema segmentation on abdominal CT using a generated adipose tissue density prior.
Int J Comput Assist Radiol Surg. 2024 Mar;19(3):443-448. doi: 10.1007/s11548-023-03051-5. Epub 2024 Jan 17.
10
Female-specific pancreatic cancer survival from CT imaging of visceral fat implicates glutathione metabolism in solid tumors.
Acad Radiol. 2024 Jun;31(6):2312-2323. doi: 10.1016/j.acra.2023.11.012. Epub 2023 Dec 20.

本文引用的文献

2
Automated Abdominal Segmentation of CT Scans for Body Composition Analysis Using Deep Learning.
Radiology. 2019 Mar;290(3):669-679. doi: 10.1148/radiol.2018181432. Epub 2018 Dec 11.
3
Deep learning-based quantification of abdominal fat on magnetic resonance images.
PLoS One. 2018 Sep 20;13(9):e0204071. doi: 10.1371/journal.pone.0204071. eCollection 2018.
4
Localization of fat depots and cardiovascular risk.
Lipids Health Dis. 2018 Sep 15;17(1):218. doi: 10.1186/s12944-018-0856-8.
5
Convolutional Neural Networks with Template-Based Data Augmentation for Functional Lung Image Quantification.
Acad Radiol. 2019 Mar;26(3):412-423. doi: 10.1016/j.acra.2018.08.003. Epub 2018 Sep 6.
6
Deep Learning for Quantification of Epicardial and Thoracic Adipose Tissue From Non-Contrast CT.
IEEE Trans Med Imaging. 2018 Aug;37(8):1835-1846. doi: 10.1109/TMI.2018.2804799. Epub 2018 Feb 9.
7
Deep Learning in Radiology.
Acad Radiol. 2018 Nov;25(11):1472-1480. doi: 10.1016/j.acra.2018.02.018. Epub 2018 Mar 30.
9
A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images.
Comput Methods Programs Biomed. 2017 Jun;144:97-104. doi: 10.1016/j.cmpb.2017.03.017. Epub 2017 Mar 21.
10
Economic Burden of Obesity: A Systematic Literature Review.
Int J Environ Res Public Health. 2017 Apr 19;14(4):435. doi: 10.3390/ijerph14040435.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验