Suppr超能文献

基于人工智能的自适应滤波去噪重建的低剂量计算机断层扫描图像评估:与迭代重建算法重建的计算机断层扫描的比较

Evaluation of Low-dose Computed Tomography Images Reconstructed Using Artificial Intelligence-based Adaptive Filtering for Denoising: A Comparison with Computed Tomography Reconstructed with Iterative Reconstruction Algorithm.

作者信息

Kulkarni Suyash, Patil Vasundhara, Nene Aniruddha, Shetty Nitin, Choudhari Amitkumar, Joshi Akansha, Pramesh C S, Baheti Akshay, Mahadik Kalpesh

机构信息

Department of Radiodiagnosis, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India.

Graone Solutions Pvt. Ltd., Kalyan, One Sg Technologies Pvt. Ltd., Pune, Maharashtra, India.

出版信息

J Med Phys. 2025 Jan-Mar;50(1):108-117. doi: 10.4103/jmp.jmp_115_24. Epub 2025 Mar 24.

Abstract

PURPOSE

Awareness of radiation-induced risk led to the development of various dose optimization techniques in iterative reconstruction (IR) algorithms and deep learning algorithms to improve low-dose image quality. PixelShine (PS) by AlgoMedica Inc., USA, is a vendor-neutral deep learning denoising tool for low-dose studies, and this study analyzed its images.

AIM

The aim of this study was to assess the diagnostic value of PS-reconstructed images obtained at various low doses (LDs).

MATERIALS AND METHODS

A retrospective study qualitatively and quantitatively evaluated the low-dose PS-reconstructed images by comparing them with other reconstruction methods and standard dose (SD) images. A total of 85 cases were evaluated, of which 32 cases were scanned on a scanner with filtered back projection (FBP) reconstruction with LD scans performed at 70%-50% of SD. The remaining 53 cases were performed on the scanner with IR, 35 of them had LD scan at 50% of SD and 18 cases had LD scan at 33% of SD.

RESULTS

Qualitative image analysis - The quality of low-dose images with PS and IR was almost equivalent in terms of noise magnitude and texture at 50% dose, and PS images were slightly better at 33% dose reduction. Quantitative image analysis - Low-dose PS-reconstructed images and low-dose iterative reconstructed images had similar contrast-to-noise ratio at 50% dose reduction; however, at 33% of the SD, PS-reconstructed images outperformed. The SD FBP images were equivalent to LD PS-reconstructed images (50% dose reduction).

CONCLUSIONS

Artificial intelligence-based denoising algorithms produce similar images as IR at 50% dose reduction and outperform it at 33% of the SD.

摘要

目的

对辐射诱导风险的认识促使在迭代重建(IR)算法和深度学习算法中开发了各种剂量优化技术,以提高低剂量图像质量。美国AlgoMedica公司的PixelShine(PS)是一种用于低剂量研究的与供应商无关的深度学习去噪工具,本研究对其图像进行了分析。

目的

本研究的目的是评估在各种低剂量(LD)下获得的PS重建图像的诊断价值。

材料和方法

一项回顾性研究通过将低剂量PS重建图像与其他重建方法及标准剂量(SD)图像进行比较,对其进行了定性和定量评估。共评估了85例病例,其中32例在具有滤波反投影(FBP)重建的扫描仪上进行扫描,低剂量扫描的剂量为标准剂量的70%-50%。其余53例在具有IR的扫描仪上进行,其中35例低剂量扫描的剂量为标准剂量的50%,18例低剂量扫描的剂量为标准剂量的33%。

结果

定性图像分析——在50%剂量时,PS和IR的低剂量图像在噪声大小和纹理方面质量几乎相当,在剂量降低33%时,PS图像略好。定量图像分析——在剂量降低50%时,低剂量PS重建图像和低剂量迭代重建图像具有相似的对比噪声比;然而,在标准剂量的33%时,PS重建图像表现更优。标准剂量FBP图像与低剂量PS重建图像(剂量降低50%)相当。

结论

基于人工智能的去噪算法在剂量降低50%时产生的图像与IR相似,在标准剂量的33%时表现优于IR。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c323/12005655/8c75eb1f3026/JMP-50-108-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验