Suppr超能文献

人工智能去噪显著提高了介入锥形束计算机断层扫描的图像质量和诊断信心。

AI Denoising Significantly Enhances Image Quality and Diagnostic Confidence in Interventional Cone-Beam Computed Tomography.

机构信息

Department of Diagnostic and Interventional Radiology, Eberhard-Karls University, D-72076 Tuebingen, Germany.

出版信息

Tomography. 2022 Apr 1;8(2):933-947. doi: 10.3390/tomography8020075.

Abstract

(1) To investigate whether interventional cone-beam computed tomography (cbCT) could benefit from AI denoising, particularly with respect to patient body mass index (BMI); (2) From 1 January 2016 to 1 January 2022, 100 patients with liver-directed interventions and peri-procedural cbCT were included. The unenhanced mask run and the contrast-enhanced fill run of the cbCT were reconstructed using weighted filtered back projection. Additionally, each dataset was post-processed using a novel denoising software solution. Place-consistent regions of interest measured signal-to-noise ratio (SNR) per dataset. Corrected mixed-effects analysis with BMI subgroup analyses compared objective image quality. Multiple linear regression measured the contribution of “Radiation Dose”, “Body-Mass-Index”, and “Mode” to SNR. Two radiologists independently rated diagnostic confidence. Inter-rater agreement was measured using Spearman correlation (r); (3) SNR was significantly higher in the denoised datasets than in the regular datasets (p < 0.001). Furthermore, BMI subgroup analysis showed significant SNR deteriorations in the regular datasets for higher patient BMI (p < 0.001), but stable results for denoising (p > 0.999). In regression, only denoising contributed positively towards SNR (0.6191; 95%CI 0.6096 to 0.6286; p < 0.001). The denoised datasets received overall significantly higher diagnostic confidence grades (p = 0.010), with good inter-rater agreement (r ≥ 0.795, p < 0.001). In a subgroup analysis, diagnostic confidence deteriorated significantly for higher patient BMI (p < 0.001) in the regular datasets but was stable in the denoised datasets (p ≥ 0.103).; (4) AI denoising can significantly enhance image quality in interventional cone-beam CT and effectively mitigate diagnostic confidence deterioration for rising patient BMI.

摘要

(1)探究介入锥形束 CT(CBCT)是否能从 AI 降噪中受益,特别是在患者体重指数(BMI)方面;(2)2016 年 1 月 1 日至 2022 年 1 月 1 日期间,纳入 100 例接受肝靶向介入治疗和围手术期 CBCT 的患者。使用加权滤波反投影法重建 CBCT 的未增强掩模运行和对比增强填充运行。此外,使用新的降噪软件解决方案对每个数据集进行后处理。每个数据集的位置一致的感兴趣区域测量信噪比(SNR)。使用 BMI 亚组分析的校正混合效应分析比较客观图像质量。多元线性回归测量“辐射剂量”、“体重指数”和“模式”对 SNR 的贡献。两名放射科医生独立评估诊断信心。使用 Spearman 相关系数(r)测量组内一致性;(3)与常规数据集相比,降噪数据集的 SNR 显著更高(p < 0.001)。此外,BMI 亚组分析显示,对于较高的患者 BMI,常规数据集的 SNR 明显恶化(p < 0.001),但降噪结果稳定(p > 0.999)。在回归中,只有降噪对 SNR 有积极贡献(0.6191;95%CI 0.6096 至 0.6286;p < 0.001)。降噪数据集总体上获得了更高的诊断置信度评分(p = 0.010),且组内一致性良好(r ≥ 0.795,p < 0.001)。在亚组分析中,常规数据集的患者 BMI 较高时,诊断信心显著恶化(p < 0.001),但降噪数据集稳定(p ≥ 0.103);(4)AI 降噪可以显著提高介入锥形束 CT 的图像质量,并有效缓解患者 BMI 升高时诊断信心的下降。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b6b/9031402/75f1d156946e/tomography-08-00075-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验