Suppr超能文献

针对轻度认知障碍老年驾驶员的车内传感与数据分析

In-vehicle Sensing and Data Analysis for Older Drivers with Mild Cognitive Impairment.

作者信息

Moshfeghi Sonia, Jan Muhammad Tanveer, Conniff Joshua, Ghoreishi Seyedeh Gol Ara, Jang Jinwoo, Furht Borko, Yang Kwangsoo, Rosselli Monica, Newman David, Tappen Ruth, Smith Dana

机构信息

College of Engg and Computer Science, Florida Atlantic University, Boca Raton, USA.

Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, USA.

出版信息

2023 IEEE 20th Int Conf Smart Communities Improv Qual Life Using AI Robot IoT HONET (2023). 2023 Dec;2023:140-145. doi: 10.1109/HONET59747.2023.10374639.

Abstract

Driving is a complex daily activity indicating age and disease-related cognitive declines. Therefore, deficits in driving performance compared with ones without mild cognitive impairment (MCI) can reflect changes in cognitive functioning. There is increasing evidence that unobtrusive monitoring of older adults' driving performance in a daily-life setting may allow us to detect subtle early changes in cognition. The objectives of this paper include designing low-cost in-vehicle sensing hardware capable of obtaining high-precision positioning and telematics data, identifying important indicators for early changes in cognition, and detecting early-warning signs of cognitive impairment in a truly normal, day-to-day driving condition with machine learning approaches. Our statistical analysis comparing drivers with MCI to those without reveals that those with MCI exhibit smoother and safer driving patterns. This suggests that drivers with MCI are cognizant of their condition and tend to avoid erratic driving behaviors. Furthermore, our Random Forest models identified the number of night trips, number of trips, and education as the most influential factors in our data evaluation.

摘要

驾驶是一项复杂的日常活动,能够显示与年龄和疾病相关的认知衰退。因此,与没有轻度认知障碍(MCI)的人相比,驾驶表现方面的缺陷可以反映认知功能的变化。越来越多的证据表明,在日常生活环境中对老年人的驾驶表现进行不显眼的监测,可能使我们能够检测到认知方面细微的早期变化。本文的目标包括设计能够获取高精度定位和远程信息处理数据的低成本车载传感硬件,识别认知早期变化的重要指标,并使用机器学习方法在真正正常的日常驾驶条件下检测认知障碍的预警信号。我们将患有MCI的驾驶员与未患MCI的驾驶员进行比较后的统计分析表明,患有MCI的驾驶员表现出更平稳、更安全的驾驶模式。这表明患有MCI的驾驶员意识到自己的状况,并且倾向于避免不稳定的驾驶行为。此外,我们的随机森林模型将夜间出行次数、出行总次数和受教育程度确定为数据评估中最具影响力的因素。

相似文献

1
In-vehicle Sensing and Data Analysis for Older Drivers with Mild Cognitive Impairment.
2023 IEEE 20th Int Conf Smart Communities Improv Qual Life Using AI Robot IoT HONET (2023). 2023 Dec;2023:140-145. doi: 10.1109/HONET59747.2023.10374639.
2
Study protocol for "In-vehicle sensors to detect changes in cognition of older drivers".
BMC Geriatr. 2023 Dec 14;23(1):854. doi: 10.1186/s12877-023-04550-5.
7
Driving difficulties as reported by older drivers with mild cognitive impairment and without neurological impairment.
Traffic Inj Prev. 2019;20(6):630-635. doi: 10.1080/15389588.2019.1626986. Epub 2019 Jun 27.
8
A Longitudinal Study Examining Self-Regulation Practices in Older Drivers with and without Suspected Mild Cognitive Impairment.
Clin Interv Aging. 2021 Dec 18;16:2069-2078. doi: 10.2147/CIA.S336802. eCollection 2021.
10
On-Road Behavior in Older Drivers With Mild Cognitive Impairment.
J Am Med Dir Assoc. 2021 Feb;22(2):399-405.e1. doi: 10.1016/j.jamda.2020.05.046. Epub 2020 Jul 19.

引用本文的文献

1
Enhancing road safety: In-vehicle sensor analysis of cognitive impairment in older drivers.
Multimed Tools Appl. 2025 May;84(17):18711-18732. doi: 10.1007/s11042-024-19833-1. Epub 2024 Jul 22.
3
Quad-tree Based Driver Classification using Deep Learning for Mild Cognitive Impairment Detection.
IEEE Access. 2025;13:63129-63142. doi: 10.1109/access.2025.3558706. Epub 2025 Apr 8.
4
Multi-Shared-Task Self-Supervised CNN-LSTM for Monitoring Free-Body Movement UPDRS-III Using Wearable Sensors.
Bioengineering (Basel). 2024 Jul 7;11(7):689. doi: 10.3390/bioengineering11070689.
5
Detection of mild cognitive impairment using various types of gait tests and machine learning.
Front Neurol. 2024 Jul 11;15:1354092. doi: 10.3389/fneur.2024.1354092. eCollection 2024.
6
Objective estimation of m-CTSIB balance test scores using wearable sensors and machine learning.
Front Digit Health. 2024 Apr 19;6:1366176. doi: 10.3389/fdgth.2024.1366176. eCollection 2024.

本文引用的文献

1
Methods and Tools for Monitoring Driver's Behavior.
Proc (Int Conf Comput Sci Comput Intell). 2022 Dec;2022:1269-1273. doi: 10.1109/csci58124.2022.00228. Epub 2022 Aug 25.
3
NON-INTRUSIVE DROWSINESS DETECTION TECHNIQUES AND THEIR APPLICATION IN DETECTING EARLY DEMENTIA IN OLDER DRIVERS.
Proc Future Technol Conf Vol 2 (2022). 2023;560(V2):776-796. doi: 10.1007/978-3-031-18458-1_53. Epub 2022 Oct 13.
4
GPS driving: a digital biomarker for preclinical Alzheimer disease.
Alzheimers Res Ther. 2021 Jun 14;13(1):115. doi: 10.1186/s13195-021-00852-1.
5
Unobtrusive Vital Sign Monitoring in Automotive Environments-A Review.
Sensors (Basel). 2018 Sep 13;18(9):3080. doi: 10.3390/s18093080.
6
Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia.
Alzheimers Dement. 2018 Sep;14(9):1216-1231. doi: 10.1016/j.jalz.2018.05.003. Epub 2018 Jun 21.
7
Longitudinal Research on Aging Drivers (LongROAD): study design and methods.
Inj Epidemiol. 2017 Dec;4(1):22. doi: 10.1186/s40621-017-0121-z. Epub 2017 Aug 1.
10
Pervasive Computing Technologies to Continuously Assess Alzheimer's Disease Progression and Intervention Efficacy.
Front Aging Neurosci. 2015 Jun 10;7:102. doi: 10.3389/fnagi.2015.00102. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验