文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Enhanced Bioadhesive and Antimicrobial Properties of PVA/Ascorbic Acid Composite with Tannic Acid Synthesized by Gamma Irradiation for Biomedical Applications.

作者信息

Adel Rashiq Shreen, Abd El-Sattar Nour E A, Abd Elhamid Hoda Abd Elhay, El-Sayyad Gharieb S, Bassioni Ghada, Ghobashy Mohamed Mohamady

机构信息

Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Abbassiya 11566, Egypt.

Basic & Medical Sciences Department, Faculty of Dentistry, Alryada University for Science & Technology, Sadat City 32897, Egypt.

出版信息

ACS Omega. 2025 Apr 3;10(14):13839-13853. doi: 10.1021/acsomega.4c07119. eCollection 2025 Apr 15.


DOI:10.1021/acsomega.4c07119
PMID:40256521
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12004146/
Abstract

Bioadhesive hydrogels play a crucial role in biomedical applications due to their capacity to adhere to biological surfaces. This study investigates a novel bioadhesive hydrogel system developed from poly(vinyl alcohol) (PVA) and ascorbic acid (AS), cross-linked through gamma irradiation at 7 kGy, and modified with 5 wt % tannic acid (TA). The primary objective was to enhance the hydrogel's bioadhesive, mechanical, and antimicrobial properties. Mechanical testing revealed that the (PVA/AS)/TA hydrogel exhibited significant improvements, with a lap shear strength of 92 kPa, a tensile strength of 0.57 MPa, and an elongation at break of 180%, compared to the unmodified variant. Antimicrobial efficacy was assessed against bacterial strains, including and , showing potent inhibitory effects with minimum inhibitory concentration (MIC) values of 25 μg/mL and 30 μg/mL, respectively. The findings indicate that the (PVA/AS)/TA hydrogel is a promising candidate for wound healing, drug delivery, and tissue engineering applications. It showcases its novelty in improving bioadhesive properties while providing antimicrobial functionality, thus addressing critical challenges in biomedical material design.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/ccb368484b62/ao4c07119_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/0c53de17faf0/ao4c07119_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/f5ae2e1219aa/ao4c07119_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/9a21751f2942/ao4c07119_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/3946a278e876/ao4c07119_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/d8f2abe56940/ao4c07119_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/30ae4adbe126/ao4c07119_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/cfe88a67cbfc/ao4c07119_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/596d67fc6009/ao4c07119_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/1b53faf6eaae/ao4c07119_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/b2f64418e458/ao4c07119_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/ccb368484b62/ao4c07119_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/0c53de17faf0/ao4c07119_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/f5ae2e1219aa/ao4c07119_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/9a21751f2942/ao4c07119_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/3946a278e876/ao4c07119_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/d8f2abe56940/ao4c07119_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/30ae4adbe126/ao4c07119_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/cfe88a67cbfc/ao4c07119_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/596d67fc6009/ao4c07119_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/1b53faf6eaae/ao4c07119_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/b2f64418e458/ao4c07119_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6090/12004146/ccb368484b62/ao4c07119_0010.jpg

相似文献

[1]
Enhanced Bioadhesive and Antimicrobial Properties of PVA/Ascorbic Acid Composite with Tannic Acid Synthesized by Gamma Irradiation for Biomedical Applications.

ACS Omega. 2025-4-3

[2]
Antimicrobial polyacrylic acid/tannic acid hydrogel wound dressing facilitating full-thickness skin healing.

J Biomater Sci Polym Ed. 2024-4

[3]
Polyphenol enhances the functionality of borate hydrogel in wound repair by regulating the wound microenvironment.

Colloids Surf B Biointerfaces. 2025-3

[4]
Strong, tough, high-release, and antibacterial nanocellulose hydrogel for refrigerated chicken preservation.

Int J Biol Macromol. 2024-4

[5]
Antimicrobial adhesive self-healing hydrogels for efficient dental biofilm removal from periodontal tissue.

Dent Mater. 2024-11

[6]
A Porous Hydrogel with High Mechanical Strength and Biocompatibility for Bone Tissue Engineering.

J Funct Biomater. 2022-9-3

[7]
Aramid nanofibers reinforced polyvinyl alcohol/tannic acid hydrogel with improved mechanical and antibacterial properties for potential application as wound dressing.

J Mech Behav Biomed Mater. 2021-6

[8]
Biocompatible autonomous self-healing PVA-CS/TA hydrogels based on hydrogen bonding and electrostatic interaction.

Sci Rep. 2025-1-13

[9]
A Polyvinyl Alcohol-Tannic Acid Gel with Exceptional Mechanical Properties and Ultraviolet Resistance.

Gels. 2022-11-20

[10]
A polyphenol and ε-polylysine functionalized bacterial cellulose/PVA multifunctional hydrogel for wound healing.

Int J Biol Macromol. 2023-8-30

引用本文的文献

[1]
Flexible Strain Sensor Based on PVA/Tannic Acid/Lithium Chloride Ionically Conductive Hydrogel with Excellent Sensing and Good Adhesive Properties.

Sensors (Basel). 2025-8-1

本文引用的文献

[1]
Amygdalin/chitosan-polyvinyl alcohol/cerium-tannic acid hydrogel as biodegradable long-time implant for cancer recurrence care applications: An study.

Heliyon. 2023-11-5

[2]
Implication of nanotechnology to reduce the environmental risks of waste associated with the COVID-19 pandemic.

RSC Adv. 2023-4-20

[3]
Pomegranate Peel Extract Stabilized Selenium Nanoparticles Synthesis: Promising Antimicrobial Potential, Antioxidant Activity, Biocompatibility, and Hemocompatibility.

Appl Biochem Biotechnol. 2023-10

[4]
State of the Art of Hydrogel Wound Dressings Developed by Ionizing Radiation.

Gels. 2023-1-10

[5]
The Effect of Gamma-Ray Irradiation on the Physical, Mechanical, and Morphological Characteristics of PVA-Collagen-Chitosan as a Guided Tissue Regeneration (GTR) Membrane Material.

Eur J Dent. 2023-5

[6]
Application of Nano-Inspired Scaffolds-Based Biopolymer Hydrogel for Bone and Periodontal Tissue Regeneration.

Polymers (Basel). 2022-9-10

[7]
Microplastics contamination in commercial fish from Alexandria City, the Mediterranean Coast of Egypt.

Environ Pollut. 2022-11-15

[8]
Tannic acid: a versatile polyphenol for design of biomedical hydrogels.

J Mater Chem B. 2022-8-10

[9]
Nanogel-mediated drug delivery system for anticancer agent: pH stimuli responsive poly(ethylene glycol/acrylic acid) nanogel prepared by gamma irradiation.

Bioorg Chem. 2022-10

[10]
Merits of photocatalytic and antimicrobial applications of gamma-irradiated Co Ni FeO/SiO/TiO; = 0.9 nanocomposite for pyridine removal and pathogenic bacteria/fungi disinfection: implication for wastewater treatment.

RSC Adv. 2020-2-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索