Alinasab Niloufar, Mohammadzadeh Negar, Karimi Alireza, Mohammadzadeh Rahmat, Gál Tamás
Department of Atmospheric and Geospatial Data Sciences, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary.
Department of Architecture, Faculty of Art, Tarbiat Modares University, Tehran, Iran.
Int J Biometeorol. 2025 Jul;69(7):1645-1662. doi: 10.1007/s00484-025-02921-8. Epub 2025 Apr 21.
This study presents a comprehensive investigation into the interplay between machine learning (ML) models, morphological features, and outdoor thermal comfort (OTC) across three key indices: Universal Thermal Climate Index (UTCI), Physiological Equivalent Temperature (PET), and Predicted Mean Vote (PMV). Based on a comprehensive field measurement for 173 urban canyons, proper dataset for summer outdoor thermal condition was provided. Concurrently, six distinct ML models were evaluated and optimized using Bayesian optimization (BO) technique, considering performance indicators like weighted accuracy, F1-Score, precision, and recall. Notable trends emerged, with the CatBoost Classifier demonstrating superior performance in UTCI prediction, the Random Forest classifier excelling in PET estimation, and the XGBoost Classifier achieving optimal PMV prediction. Furthermore, the study delved into the influence of morphological features on OTC, prioritizing factors using SHAP values. Results consistently identified 90-degree orientation, street width, and 180-degree orientation as pivotal factors influencing OTC, with varying degrees of sensitivity across different classifications of thermal stress. Analysis of binary SHAP values unveiled intricate relationships between urban features and OTC indices, emphasizing the critical influence of street orientation on regulating outdoor thermal environments for UTCI and PET scenarios. Surprisingly, street width emerged as the foremost influential factor within the PMV index, challenging established trends and highlighting the complexity of thermal comfort modeling. Additionally, current research delineates the multifaceted impact of street width on microclimate dynamics, enriching our understanding of urban thermal dynamics and emphasizing its role in mitigating thermal stress within urban environments.
本研究对机器学习(ML)模型、形态特征与室外热舒适度(OTC)之间的相互作用进行了全面调查,涉及三个关键指标:通用热气候指数(UTCI)、生理等效温度(PET)和预测平均投票数(PMV)。基于对173个城市峡谷的全面实地测量,提供了夏季室外热状况的合适数据集。同时,使用贝叶斯优化(BO)技术对六个不同的ML模型进行了评估和优化,考虑了加权准确率、F1分数、精确率和召回率等性能指标。出现了显著趋势,CatBoost分类器在UTCI预测中表现出卓越性能,随机森林分类器在PET估计方面表现出色,而XGBoost分类器实现了最佳的PMV预测。此外,该研究深入探讨了形态特征对OTC的影响,使用SHAP值对因素进行了优先级排序。结果一致确定90度朝向、街道宽度和180度朝向是影响OTC的关键因素,在不同热应激分类中具有不同程度的敏感性。对二元SHAP值的分析揭示了城市特征与OTC指数之间的复杂关系,强调了街道朝向对UTCI和PET场景下调节室外热环境的关键影响。令人惊讶的是,街道宽度在PMV指数中成为最具影响力的因素,挑战了既定趋势并突出了热舒适度建模的复杂性。此外,当前研究描述了街道宽度对微气候动态的多方面影响,丰富了我们对城市热动态的理解,并强调了其在减轻城市环境热应激方面的作用。