Suppr超能文献

二氧化碳在聚乙二醇聚合物中的溶解度:一个精确的智能估算框架。

Carbon dioxide solubility in polyethylene glycol polymer: an accurate intelligent estimation framework.

作者信息

Sead Fadhel F, Sur Dharmesh, Yadav Anupam, Ballal Suhas, Singh Abhayveer, Krithiga T, Vats Satvik, Yuldashev Farrukh, Ahmad Irfan, Sherzod Samim

机构信息

Department of Dentistry, College of Dentistry, The Islamic University, Najaf, Iraq.

Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq.

出版信息

Sci Rep. 2025 Apr 22;15(1):13949. doi: 10.1038/s41598-025-98512-z.

Abstract

Polyethylene glycol (PEG), a synthetic polymer made up of repeating ethylene oxide units, is widely recognized for its broad utility and adaptable properties. Precise estimation of CO solubility in PEG plays a vital role in enhancing processes such as supercritical fluid extraction, carbon capture, and polymer modification, where CO serves as a solvent or transport medium. This study focuses on building advanced predictive models using machine-learning approaches, such as random forest (RF), decision tree (DT), adaptive boosting (AdaBoost), k-nearest neighbors (KNN), and ensemble learning (EL) to forecast CO solubility in PEG across a wide range of conditions. The data utilized for model development is sourced from previously published literature, and an outlier detection method is applied beforehand to identify any suspicious data points. Additionally, sensitivity analysis is performed to evaluate the relative influence of each input parameter on the output variable. The results proved that DT model is the most performance method for estimating CO solubility in PEG since it showed largest R-squared (i.e., 0.801 and 0.991 for test and train, respectively) and lowest error metrics (MSE: 0.0009 and AARE%: 22.58 for test datapoints). In addition, it was found that pressure and PEG molar mass directly affects the solubility in contrast to the temperature variable which has an inverse relationship. The developed DT model can be regarded accurate and robust user-friendly tool for estimating CO solubility in PEG without needing experimental workflows which are known to be time-consuming, expensive and tedious.

摘要

聚乙二醇(PEG)是一种由重复的环氧乙烷单元组成的合成聚合物,因其广泛的用途和适应性强的特性而被广泛认可。精确估算二氧化碳在PEG中的溶解度,对于强化超临界流体萃取、碳捕获和聚合物改性等过程起着至关重要的作用,在这些过程中二氧化碳用作溶剂或传输介质。本研究聚焦于使用机器学习方法构建先进的预测模型,如随机森林(RF)、决策树(DT)、自适应提升(AdaBoost)、k近邻(KNN)和集成学习(EL),以预测在广泛条件下二氧化碳在PEG中的溶解度。用于模型开发的数据源自先前发表的文献,并且预先应用了异常值检测方法来识别任何可疑数据点。此外,还进行了敏感性分析,以评估每个输入参数对输出变量的相对影响。结果证明,DT模型是估算二氧化碳在PEG中溶解度的性能最佳方法,因为它显示出最大的决定系数(即测试集和训练集的R平方分别为0.801和0.991)以及最低的误差指标(测试数据点的均方误差:0.0009,平均绝对相对误差百分比:22.58)。此外,研究发现压力和PEG摩尔质量直接影响溶解度,而温度变量与之呈反比关系。所开发的DT模型可被视为一种准确、稳健且用户友好的工具,用于估算二氧化碳在PEG中的溶解度,而无需已知耗时、昂贵且繁琐的实验流程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3bf4/12015362/4cde2329bce4/41598_2025_98512_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验