Suppr超能文献

理解硅沉淀肽的自组装以控制硅粒子形态。

Understanding Self-Assembly of Silica-Precipitating Peptides to Control Silica Particle Morphology.

机构信息

Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 38, Vienna, 109, Austria.

Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Währinger Str. 42, Vienna, 1090, Austria.

出版信息

Adv Mater. 2023 Mar;35(11):e2207586. doi: 10.1002/adma.202207586. Epub 2023 Jan 25.

Abstract

The most advanced materials are those found in nature. These evolutionary optimized substances provide highest efficiencies, e.g., in harvesting solar energy or providing extreme stability, and are intrinsically biocompatible. However, the mimicry of biological materials is limited to a few successful applications since there is still a lack of the tools to recreate natural materials. Herein, such means are provided based on a peptide library derived from the silaffin protein R5 that enables rational biomimetic materials design. It is now evident that biomaterials do not form via mechanisms observed in vitro. Instead, the material's function and morphology are predetermined by precursors that self-assemble in solution, often from a combination of protein and salts. These assemblies act as templates for biomaterials. The RRIL peptides used here are a small part of the silica-precipitation machinery in diatoms. By connecting RRIL motifs via varying central bi- or trifunctional residues, a library of stereoisomers is generated, which allows characterization of different template structures in the presence of phosphate ions by combining residue-resolved real-time NMR spectroscopy and molecular dynamics (MD) simulations. Understanding these templates in atomistic detail, the morphology of silica particles is controlled via manipulation of the template precursors.

摘要

最先进的材料是在自然界中发现的材料。这些经过进化优化的物质具有最高的效率,例如在太阳能的收集或提供极端稳定性方面,并且具有内在的生物相容性。然而,由于缺乏重现天然材料的工具,生物材料的仿生仍然局限于少数成功的应用。在这里,提供了基于源自丝氨酸蛋白酶 R5 的肽文库的此类手段,这使得合理的仿生材料设计成为可能。现在已经很明显,生物材料不是通过在体外观察到的机制形成的。相反,材料的功能和形态是由在溶液中自组装的前体预先确定的,这些前体通常由蛋白质和盐的组合构成。这些组装体充当生物材料的模板。这里使用的 RRIL 肽是硅藻中硅沉淀机制的一小部分。通过连接 RRIL 基序通过不同的中央双功能或三功能残基,生成了立体异构体文库,这允许通过结合残基分辨实时 NMR 光谱和分子动力学(MD)模拟在存在磷酸根离子的情况下对不同的模板结构进行表征。通过操纵模板前体,从原子细节上理解这些模板,控制二氧化硅颗粒的形态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/94b9/11475327/e9da801be55e/ADMA-35-2207586-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验