Suppr超能文献

机器学习驱动的SCAPS模型用于优化CHNHSnBr钙钛矿太阳能电池:对空穴传输材料和活性层材料的分析洞察

Machine Learning-Driven SCAPS Modeling for Optimizing CHNHSnBr Perovskite Solar Cells: Analytical Insights into Materials for Hole Transport and the Active Layer.

作者信息

Ghosh Avijit, Moumita Mahbuba, Bappy Md Aliahsan, Dey Nondon Lal, Aktarujjaman Md, Islam Jim Md Majadul, Awwad Nasser S, Ibrahium Hala A

机构信息

Department of Electrical and Electronic Engineering, Begum Rokeya University, Rangpur 5400, Bangladesh.

Department of Mathematics, Lamar University, Beaumont, Texas 77705, United States.

出版信息

Langmuir. 2025 May 6;41(17):11215-11237. doi: 10.1021/acs.langmuir.5c01125. Epub 2025 Apr 24.

Abstract

This work explores the potential for integrating organic compounds, which serve as absorbers, with HTL to achieve steady, efficient PSCs. This study's proposed architecture is made up of ETL, HTL, and a CHNHSnBr absorber. The effect of thickness, doping, and defect densities of absorber, HTL, and ETL layers and interface defect densities on a solar device's output is investigated utilizing the SCAPS-1D model. The FTO/SnS/CHNHSnBr/Ni structure has a of 0.991 V, a of 28.796 mA cm, a PCE of 23.88%, and an FF of 83.69%. Concerns about stability, rapid oxidation of Sn to Sn, and high defect density limit the efficiency of CHNHSnBr-based solar cells. The FTO/SnS/CHNHSnBr/HTL/Ni structure is investigated to prevent Sn oxidation, increase stability, and improve charge transport for improved performance. The analyzed structure is integrated with BiI/SnS/WSe/PTAA/CuS/CuI/CTBTAPH/CBTS layers as an HTL, resulting in a maximum of 1.128 V, a of 34.014 mA cm, a PCE of 33.70%, and an FF of 87.83% with the FTO/SnS/CHNHSnBr/CBTS/Ni structure. The performance matrix of the investigated best optimum solar cell was predicted by ML with an accuracy rate of roughly 83.75%. This study's useful design and important discoveries could result in the creation of an inexpensive CHNHSnBr thin-film solar cell.

摘要

这项工作探索了将用作吸收剂的有机化合物与空穴传输层(HTL)集成以实现稳定、高效的有机太阳能电池(PSC)的潜力。本研究提出的结构由电子传输层(ETL)、空穴传输层和一种CHNHSnBr吸收剂组成。利用SCAPS - 1D模型研究了吸收剂、空穴传输层和电子传输层的厚度、掺杂、缺陷密度以及界面缺陷密度对太阳能器件输出的影响。FTO/SnS/CHNHSnBr/Ni结构的开路电压为0.991 V,短路电流密度为28.796 mA/cm²,光电转换效率(PCE)为23.88%,填充因子(FF)为83.69%。对稳定性、Sn快速氧化成Sn²⁺以及高缺陷密度的担忧限制了基于CHNHSnBr的太阳能电池的效率。研究了FTO/SnS/CHNHSnBr/HTL/Ni结构以防止Sn氧化、提高稳定性并改善电荷传输以提升性能。所分析的结构与BiI/SnS/WSe/PTAA/CuS/CuI/CTBTAPH/CBTS层集成作为空穴传输层,对于FTO/SnS/CHNHSnBr/CBTS/Ni结构,其最大开路电压为1.128 V,短路电流密度为34.014 mA/cm²,光电转换效率为33.70%,填充因子为87.83%。通过机器学习(ML)预测了所研究的最佳优化太阳能电池的性能矩阵,准确率约为83.75%。本研究的有益设计和重要发现可能会促成一种廉价的CHNHSnBr薄膜太阳能电池的诞生。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验