Suppr超能文献

基于自适应分布混合变异增强的蛇优化算法及其在储能系统容量优化中的应用

Snake Optimization Algorithm Augmented by Adaptive -Distribution Mixed Mutation and Its Application in Energy Storage System Capacity Optimization.

作者信息

Yue Yinggao, Cao Li, Chen Changzu, Chen Yaodan, Chen Binhe

机构信息

School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou 325035, China.

出版信息

Biomimetics (Basel). 2025 Apr 16;10(4):244. doi: 10.3390/biomimetics10040244.

Abstract

To address the drawbacks of the traditional snake optimization method, such as a random population initialization, slow convergence speed, and low accuracy, an adaptive -distribution mixed mutation snake optimization strategy is proposed. Initially, Tent-based chaotic mapping and the quasi-reverse learning approach are utilized to enhance the quality of the initial solution and the population initialization process of the original method. During the evolution stage, a novel adaptive -distribution mixed mutation foraging strategy is introduced to substitute the original foraging stage method. This strategy perturbs and mutates at the optimal solution position to generate new solutions, thereby improving the algorithm's ability to escape local optima. The mating mode in the evolution stage is replaced with an opposite-sex attraction mechanism, providing the algorithm with more opportunities for global exploration and exploitation. The improved snake optimization method accelerates convergence and improves accuracy while balancing the algorithm's local and global exploitation capabilities. The experimental results demonstrate that the improved method outperforms other optimization methods, including the standard snake optimization technique, in terms of solution robustness and accuracy. Additionally, each improvement technique complements and amplifies the effects of the others.

摘要

为了克服传统蛇优化方法的缺点,如随机种群初始化、收敛速度慢和精度低等问题,提出了一种自适应分布混合变异蛇优化策略。首先,利用帐篷混沌映射和准反向学习方法来提高初始解的质量和原方法的种群初始化过程。在进化阶段,引入一种新颖的自适应分布混合变异觅食策略来替代原觅食阶段方法。该策略在最优解位置进行扰动和变异以生成新解,从而提高算法逃离局部最优的能力。进化阶段的交配模式被异性吸引机制所取代,为算法提供了更多全局探索和利用的机会。改进后的蛇优化方法在平衡算法局部和全局利用能力的同时,加快了收敛速度并提高了精度。实验结果表明,改进后的方法在解的鲁棒性和精度方面优于其他优化方法,包括标准蛇优化技术。此外,每种改进技术相互补充并放大了其他技术的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5193/12024807/9ca8f1059590/biomimetics-10-00244-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验