Tian Zhuowan, Xi Yiqing, Chen Mengting, Hu Meishun, Chen Fangfang, Wei Lei, Zhang Jingwei
Hubei Key Laboratory of Tumor Biological Behaviors, Department of Breast and Thyroid Surgery, Hubei Cancer Clinical Study Center, Zhongnan Hospital, Wuhan University, Wuhan 430071, China.
Department of Head and Neck Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430079, China.
Curr Oncol. 2025 Mar 27;32(4):194. doi: 10.3390/curroncol32040194.
The pan-immune inflammation value (PIV) has unclear predictive utility for pathologic complete response (pCR) in breast cancer patients undergoing neoadjuvant chemotherapy (NAC). This study aimed to evaluate the PIV's predictive value and develop a nomogram integrating PIV for individualized pCR prediction.
In a retrospective multicenter study of 507 NAC-treated patients (training cohort: 357; validation cohort: 150), independent predictors of pCR were identified through univariate and multivariate logistic regression. A nomogram was constructed and validated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). Net reclassification improvement (NRI) and integrated discrimination improvement (IDI) evaluated the improvement in performance after incorporating the PIV indicator.
The high PIV patients (cutoff: 316.533) had significantly lower pCR rates than the low PIV patients ( < 0.001). The nomogram incorporating PIV, estrogen receptor (ER), human epidermal growth factor receptor-2 (Her2), tumor diameter, clinical node stage, and chemotherapy regimen showed excellent discrimination (training cohort area under the curve (AUC): 0.861, 95% confidence interval (CI): 0.821-0.901; validation cohort AUC: 0.815, 95% CI: 0.748-0.882). The calibration curves demonstrate high prediction accuracy (Hosmer-Lemeshow test: > 0.05), while DCA, NRI (0.341, 95% CI: 0.181-0.500), and IDI (0.017, 95% CI: 0.004-0.029) confirm clinical utility.
The PIV is an independent predictor of pCR, and the PIV-based nomogram provides a reliable tool for optimizing NAC response prediction in breast cancer.
泛免疫炎症值(PIV)对接受新辅助化疗(NAC)的乳腺癌患者病理完全缓解(pCR)的预测效用尚不清楚。本研究旨在评估PIV的预测价值,并开发一种整合PIV的列线图用于个体化pCR预测。
在一项对507例接受NAC治疗患者的回顾性多中心研究中(训练队列:357例;验证队列:150例),通过单因素和多因素逻辑回归确定pCR的独立预测因素。使用受试者工作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)构建并验证列线图。净重新分类改善(NRI)和综合判别改善(IDI)评估纳入PIV指标后性能的改善情况。
高PIV患者(截断值:316.533)的pCR率显著低于低PIV患者(<0.001)。纳入PIV、雌激素受体(ER)、人表皮生长因子受体2(Her2)、肿瘤直径、临床淋巴结分期和化疗方案的列线图显示出良好的判别能力(训练队列曲线下面积(AUC):0.861,95%置信区间(CI):0.821 - 0.901;验证队列AUC:0.815,95%CI:0.748 - 0.882)。校准曲线显示出高预测准确性(Hosmer - Lemeshow检验:>0.05),而DCA、NRI(0.341,95%CI:0.181 - 0.500)和IDI(0.017,95%CI:0.004 - 0.029)证实了其临床效用。
PIV是pCR的独立预测因素,基于PIV的列线图为优化乳腺癌NAC反应预测提供了可靠工具。