Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nürnberg.
Department of Internal Medicine 3.
Rheumatology (Oxford). 2022 Nov 28;61(12):4945-4951. doi: 10.1093/rheumatology/keac197.
To evaluate whether neural networks can distinguish between seropositive RA, seronegative RA, and PsA based on inflammatory patterns from hand MRIs and to test how psoriasis patients with subclinical inflammation fit into such patterns.
ResNet neural networks were utilized to compare seropositive RA vs PsA, seronegative RA vs PsA, and seropositive vs seronegative RA with respect to hand MRI data. Results from T1 coronal, T2 coronal, T1 coronal and axial fat-suppressed contrast-enhanced (CE), and T2 fat-suppressed axial sequences were used. The performance of such trained networks was analysed by the area under the receiver operating characteristics curve (AUROC) with and without presentation of demographic and clinical parameters. Additionally, the trained networks were applied to psoriasis patients without clinical arthritis.
MRI scans from 649 patients (135 seronegative RA, 190 seropositive RA, 177 PsA, 147 psoriasis) were fed into ResNet neural networks. The AUROC was 75% for seropositive RA vs PsA, 74% for seronegative RA vs PsA, and 67% for seropositive vs seronegative RA. All MRI sequences were relevant for classification, however, when deleting contrast agent-based sequences the loss of performance was only marginal. The addition of demographic and clinical data to the networks did not provide significant improvements for classification. Psoriasis patients were mostly assigned to PsA by the neural networks, suggesting that a PsA-like MRI pattern may be present early in the course of psoriatic disease.
Neural networks can be successfully trained to distinguish MRI inflammation related to seropositive RA, seronegative RA, and PsA.
评估神经网络是否可以根据手部 MRI 的炎症模式区分血清阳性 RA、血清阴性 RA 和 PsA,并检验亚临床炎症的银屑病患者是否符合此类模式。
利用 ResNet 神经网络比较手部 MRI 数据中血清阳性 RA 与 PsA、血清阴性 RA 与 PsA 以及血清阳性 RA 与血清阴性 RA。使用 T1 冠状位、T2 冠状位、T1 冠状位和轴位脂肪抑制对比增强(CE)以及 T2 脂肪抑制轴位序列。分析经过训练的网络的性能,包括有和没有呈现人口统计学和临床参数的情况下的接收器工作特征曲线(AUROC)下面积。此外,将训练好的网络应用于无临床关节炎的银屑病患者。
将 649 名患者(135 名血清阴性 RA、190 名血清阳性 RA、177 名 PsA、147 名银屑病)的 MRI 扫描输入到 ResNet 神经网络中。血清阳性 RA 与 PsA 的 AUROC 为 75%,血清阴性 RA 与 PsA 的 AUROC 为 74%,血清阳性 RA 与血清阴性 RA 的 AUROC 为 67%。所有 MRI 序列都与分类相关,但删除基于造影剂的序列后,性能损失仅略有增加。将人口统计学和临床数据添加到网络中,对分类并没有显著改善。神经网络将大多数银屑病患者分配给 PsA,表明在银屑病病程早期可能存在类似 PsA 的 MRI 模式。
神经网络可以成功地训练用于区分与血清阳性 RA、血清阴性 RA 和 PsA 相关的 MRI 炎症。