Acuña Luna Kathya P, Hernandez-Rios Edgar Rafael, Valencia Victor, Trenado Carlos, Peñaloza Christian
Mirai Innovation Research Institute, Osaka 559-0034, Japan.
Institute for the Future of Education Europe (IFE), 48014 Bilbao, Spain.
Bioengineering (Basel). 2025 Mar 22;12(4):331. doi: 10.3390/bioengineering12040331.
This research explored the integration of the real-time machine learning classification of motor imagery data with a brain-machine interface, leveraging prefabricated exoskeletons and an EEG headset integrated with virtual reality (VR). By combining these technologies, the study aimed to develop practical and scalable therapeutic applications for rehabilitation and daily motor training. The project showcased an optimized system designed to assess and train cognitive-motor functions in elderly individuals. Key innovations included a motor imagery EEG acquisition protocol for data classification and a machine learning framework leveraging deep learning with a wavelet packet transform for feature extraction. Comparative analyses were conducted with traditional models such as Support Vector Machines (SVMs), Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM) networks. The performance was further enhanced through a random hyperparameter search, optimizing feature extraction and learning parameters to achieve high classification accuracy (89.23%). A novel VR fishing game was developed to dynamically respond to EEG outputs, enabling the performance of interactive motor imagery tasks in coordination with upper limb exoskeleton arms. While clinical testing is ongoing, the system demonstrates potential for increasing ERD/ERS polarization rates in alpha and beta waves among elderly users after several weeks of training. This integrated approach offers a tangible step forward in creating effective, user-friendly solutions for motor function rehabilitation.
本研究探索了运动想象数据的实时机器学习分类与脑机接口的整合,利用预制外骨骼和集成虚拟现实(VR)的脑电图耳机。通过结合这些技术,该研究旨在开发用于康复和日常运动训练的实用且可扩展的治疗应用。该项目展示了一个优化系统,旨在评估和训练老年人的认知运动功能。关键创新包括用于数据分类的运动想象脑电图采集协议,以及利用深度学习和小波包变换进行特征提取的机器学习框架。与支持向量机(SVM)、卷积神经网络(CNN)和长短期记忆(LSTM)网络等传统模型进行了比较分析。通过随机超参数搜索进一步提高了性能,优化了特征提取和学习参数,以实现高分类准确率(89.23%)。开发了一种新颖的VR钓鱼游戏,以动态响应脑电图输出,使上肢外骨骼手臂能够配合执行交互式运动想象任务。虽然临床测试正在进行中,但该系统显示出在经过几周训练后,老年用户中阿尔法和贝塔波的事件相关去同步化/事件相关同步化(ERD/ERS)极化率有增加的潜力。这种综合方法在为运动功能康复创建有效、用户友好的解决方案方面向前迈出了切实的一步。