Suppr超能文献

基于深度卷积神经网络的动觉运动想象任务中脑电信号的分类与迁移学习

Classification and Transfer Learning of EEG during a Kinesthetic Motor Imagery Task using Deep Convolutional Neural Networks.

作者信息

Craik Alexander, Kilicarslan Atilla, Contreras-Vidal Jose L

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3046-3049. doi: 10.1109/EMBC.2019.8857575.

Abstract

The reliable classification of Electroencephalography (EEG) signals is a crucial step towards making EEG-controlled non-invasive neuro-exoskeleton rehabilitation a practical reality. EEG signals collected during motor imagery tasks have been proposed to act as a control signal for exoskeleton applications. Here, a Deep Convolutional Neural Network (DCNN) was optimized to classify a two-class kinesthetic motor imagery EEG dataset, leading to an optimized architecture consisting of four convolutional layers and three fully connected layers. Transfer learning, or the leveraging of data from past subjects to classify the intentions of a new subject, is important for rehabilitation as it helps to minimize the number of training sessions required from subjects who lack full motor functionality. The transfer learning training paradigm investigated through this study utilized region criticality trends to reduce the number of new subject training sessions and increase the classification performance when compared against a single-subject non-transfer-learning classifier.

摘要

脑电图(EEG)信号的可靠分类是使基于脑电图控制的非侵入性神经外骨骼康复成为现实的关键一步。在运动想象任务期间收集的脑电图信号已被提议用作外骨骼应用的控制信号。在此,对深度卷积神经网络(DCNN)进行了优化,以对两类动觉运动想象脑电图数据集进行分类,从而得到了一个由四个卷积层和三个全连接层组成的优化架构。迁移学习,即利用来自过去受试者的数据对新受试者的意图进行分类,对于康复至关重要,因为它有助于减少缺乏完全运动功能的受试者所需的训练次数。通过本研究调查的迁移学习训练范式利用区域关键性趋势来减少新受试者的训练次数,并与单受试者非迁移学习分类器相比提高分类性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验