Suppr超能文献

用于过度分散数据的连续穆特分布的一种新离散模拟:性质、估计技术及应用

A New Discrete Analogue of the Continuous Muth Distribution for Over-Dispersed Data: Properties, Estimation Techniques, and Application.

作者信息

Elsayed Howaida, Hussein Mohamed

机构信息

Department of Business Administration, College of Business, King Khalid University, Abha 61421, Saudi Arabia.

Department of Mathematics and Computer Science, Alexandria University, Alexandria 21544, Egypt.

出版信息

Entropy (Basel). 2025 Apr 10;27(4):409. doi: 10.3390/e27040409.

Abstract

We present a new one-parameter discrete Muth (DsMuth) distribution, a flexible probability mass function designed for modeling count data, particularly over-dispersed data. The proposed distribution is derived through the survival discretization approach. Several of the proposed distribution's characteristics and reliability measures are investigated, including the mean, variance, skewness, kurtosis, probability-generating function, moments, moment-generating function, mean residual life, quantile function, and entropy. Different estimation approaches, including maximum likelihood, moments, and proportion, are explored to identify unknown distribution parameters. The performance of these estimators is assessed through simulations under different parameter settings and sample sizes. Additionally, a real dataset is used to emphasize the significance of the proposed distribution compared to other available discrete probability distributions.

摘要

我们提出了一种新的单参数离散穆特(DsMuth)分布,这是一种灵活的概率质量函数,专为对计数数据进行建模而设计,特别是针对过度分散的数据。所提出的分布是通过生存离散化方法推导出来的。研究了所提出分布的几个特征和可靠性度量,包括均值、方差、偏度、峰度、概率生成函数、矩、矩生成函数、平均剩余寿命、分位数函数和熵。探索了不同的估计方法,包括最大似然法、矩法和比例法,以识别未知的分布参数。通过在不同参数设置和样本量下的模拟来评估这些估计器的性能。此外,使用一个真实数据集来强调所提出的分布相对于其他可用离散概率分布的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4540/12025837/7e7291331012/entropy-27-00409-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验