Lim Donghun, Choi Janghoon
Graduate School of Data Science, Kyungpook National University, Daegu 41566, Republic of Korea.
Sensors (Basel). 2025 Apr 10;25(8):2402. doi: 10.3390/s25082402.
The increasing adoption of high-resolution imaging sensors across various fields has led to a growing demand for techniques to enhance video quality. Video super-resolution (VSR) addresses this need by reconstructing high-resolution videos from lower-resolution inputs; however, directly applying single-image super-resolution (SISR) methods to video sequences neglects temporal information, resulting in inconsistent and unnatural outputs. In this paper, we propose FDI-VSR, a novel framework that integrates spatiotemporal dynamics and frequency-domain analysis into conventional SISR models without extensive modifications. We introduce two key modules: the Spatiotemporal Feature Extraction Module (STFEM), which employs dynamic offset estimation, spatial alignment, and multi-stage temporal aggregation using residual channel attention blocks (RCABs); and the Frequency-Spatial Integration Module (FSIM), which transforms deep features into the frequency domain to effectively capture global context beyond the limited receptive field of standard convolutions. Extensive experiments on the Vid4, SPMCs, REDS4, and UDM10 benchmarks, supported by detailed ablation studies, demonstrate that FDI-VSR not only surpasses conventional VSR methods but also achieves competitive results compared to recent state-of-the-art methods, with improvements of up to 0.82 dB in PSNR on the SPMCs benchmark and notable reductions in visual artifacts, all while maintaining lower computational complexity and faster inference.
高分辨率成像传感器在各个领域的日益广泛应用,导致对提高视频质量技术的需求不断增长。视频超分辨率(VSR)通过从低分辨率输入重建高分辨率视频来满足这一需求;然而,直接将单图像超分辨率(SISR)方法应用于视频序列会忽略时间信息,导致输出不一致且不自然。在本文中,我们提出了FDI-VSR,这是一个新颖的框架,它在无需大量修改的情况下,将时空动态和频域分析集成到传统的SISR模型中。我们引入了两个关键模块:时空特征提取模块(STFEM),它采用动态偏移估计、空间对齐以及使用残差通道注意力块(RCAB)的多阶段时间聚合;以及频率-空间集成模块(FSIM),它将深度特征转换到频域,以有效捕捉超出标准卷积有限感受野的全局上下文。在Vid4、SPMCs、REDS4和UDM10基准上进行的大量实验,辅以详细的消融研究,表明FDI-VSR不仅超越了传统的VSR方法,而且与最近的先进方法相比也取得了有竞争力的结果,在SPMCs基准上PSNR提高了高达0.82 dB,视觉伪像显著减少,同时保持了较低的计算复杂度和更快的推理速度。