Suppr超能文献

用于神经视频压缩的掩码特征残差编码

Masked Feature Residual Coding for Neural Video Compression.

作者信息

Shin Chajin, Kim Yonghwan, Choi KwangPyo, Lee Sangyoun

机构信息

School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea.

Samsung Seoul R&D Campus, Seoul 06765, Republic of Korea.

出版信息

Sensors (Basel). 2025 Jul 17;25(14):4460. doi: 10.3390/s25144460.

Abstract

In neural video compression, an approximation of the target frame is predicted, and a mask is subsequently applied to it. Then, the masked predicted frame is subtracted from the target frame and fed into the encoder along with the conditional information. However, this structure has two limitations. First, in the pixel domain, even if the mask is perfectly predicted, the residuals cannot be significantly reduced. Second, reconstructed features with abundant temporal context information cannot be used as references for compressing the next frame. To address these problems, we propose Conditional Masked Feature Residual (CMFR) Coding. We extract features from the target frame and the predicted features using neural networks. Then, we predict the mask and subtract the masked predicted features from the target features. Thereafter, the difference is fed into the encoder with the conditional information. Moreover, to more effectively remove conditional information from the target frame, we introduce a Scaled Feature Fusion (SFF) module. In addition, we introduce a Motion Refiner to enhance the quality of the decoded optical flow. Experimental results show that our model achieves an 11.76% bit saving over the model without the proposed methods, averaged over all HEVC test sequences, demonstrating the effectiveness of the proposed methods.

摘要

在神经视频压缩中,首先预测目标帧的近似值,随后对其应用掩码。然后,从目标帧中减去掩码后的预测帧,并将其与条件信息一起输入编码器。然而,这种结构有两个局限性。第一,在像素域中,即使掩码被完美预测,残差也无法显著减少。第二,具有丰富时间上下文信息的重建特征不能用作压缩下一帧的参考。为了解决这些问题,我们提出了条件掩码特征残差(CMFR)编码。我们使用神经网络从目标帧和预测特征中提取特征。然后,我们预测掩码,并从目标特征中减去掩码后的预测特征。此后,将差值与条件信息一起输入编码器。此外,为了更有效地从目标帧中去除条件信息,我们引入了缩放特征融合(SFF)模块。另外,我们引入了运动细化器来提高解码光流的质量。实验结果表明,在所有HEVC测试序列上平均,我们的模型比未采用所提方法的模型节省了11.76%的比特,证明了所提方法的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1418/12299318/0b679b585c8c/sensors-25-04460-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验