Suppr超能文献

基于分数阶微积分的淋巴丝虫病感染动力学的数学研究

Mathematical study of the dynamics of lymphatic filariasis infection via fractional-calculus.

作者信息

Alshehri Ahmed, Shah Zahir, Jan Rashid

机构信息

Department of Mathematics, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589 Saudi Arabia.

Department of Mathematical Sciences, University of Lakki Marwat, Lakki Marwat, 28420 KPK Pakistan.

出版信息

Eur Phys J Plus. 2023;138(3):280. doi: 10.1140/epjp/s13360-023-03881-x. Epub 2023 Mar 26.

Abstract

The infection of lymphatic filariasis (LF) is the primary cause of poverty and disability in individuals living with the disease. Many organizations globally are working toward mitigating the disease's impact and enhancing the quality of life of the affected patients. It is paramount to inspect the transmission pattern of this infection to provide effective interventions for its prevention and control. Here, we formulate an epidemic model for the progression process of LF with acute and chronic infection in the fractional framework. The basic concept of the novel Atangana-Baleanu operator is presented for the analysis of suggested system. We determine the basic reproduction number of the system via the approach of next-generation matrix and investigate the equilibria of the system for stability analysis. We have shown the impact of input factors on the outcomes of reproduction parameter with the help of partial rank correlation coefficient approach and visualize the most critical factors. To conceptualize the time series analysis of the suggested dynamics, we propose utilizing a numerical approach. The solution pathways of the system are illustrated to demonstrate how different settings affect the system. We demonstrate the dynamics of the infection numerically to educate the policy makers and health authorities about the mechanisms necessary for management and control.

摘要

淋巴丝虫病(LF)感染是该病患者贫困和残疾的主要原因。全球许多组织都在努力减轻该疾病的影响,提高受影响患者的生活质量。检查这种感染的传播模式对于为其预防和控制提供有效的干预措施至关重要。在此,我们在分数阶框架下为LF的急性和慢性感染进展过程建立了一个流行病模型。提出了新颖的阿坦加纳 - 巴莱努算子的基本概念用于分析所提出的系统。我们通过下一代矩阵方法确定系统的基本再生数,并研究系统的平衡点以进行稳定性分析。我们借助偏秩相关系数方法展示了输入因素对繁殖参数结果的影响,并可视化了最关键的因素。为了概念化所提出动力学的时间序列分析,我们建议采用数值方法。说明了系统的解路径,以展示不同设置如何影响系统。我们通过数值演示感染的动态情况,以便向政策制定者和卫生当局宣传管理和控制所需的机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0e/10040084/60d3400c6c73/13360_2023_3881_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验