Yao Bing, Leonelli Fabio, Yang Hui
Department of Industrial and Systems Engineering, The University of Tennessee, Knoxville, TN 37996 USA.
Cardiac Electrophysiology Lab, James A. Haley Veteran's Hospital, Tampa, FL 33620 USA.
IEEE Trans Autom Sci Eng. 2025;22:10442-10456. doi: 10.1109/tase.2024.3524132. Epub 2025 Jan 6.
Many engineering and healthcare systems are featured with spatiotemporal dynamic processes. The optimal control of such systems often involves sequential decision making. However, traditional sequential decision-making methods are not applicable to optimize dynamic systems that involves complex 3D geometries. Simulation modeling offers an unprecedented opportunity to evaluate alternative decision options and search for the optimal plan. In this paper, we develop a novel simulation optimization framework for sequential optimization of 3D dynamic systems. We first propose to measure the similarity between functional simulation outputs using coherence to assess the effectiveness of decision actions. Second, we develop a novel Gaussian Process (GP) model by constructing a valid kernel based on Hausdorff distance to estimate the coherence for different decision paths. Finally, we devise a new Monte Carlo Tree Search (MCTS) algorithm, i.e., Normal-Gamma GP MCTS (NG-GP-MCTS), to sequentially optimize the spatiotemporal dynamics. We implement the NG-GP-MCTS algorithm to design an optimal ablation path for restoring normal sinus rhythm (NSR) from atrial fibrillation (AF). We evaluate the performance of NG-GP-MCTS with spatiotemporal cardiac simulation in a 3D atrial geometry. Computer experiments show that our algorithm is highly promising for designing effective sequential procedures to optimize spatiotemporal dynamics in complex geometries.
许多工程和医疗系统都具有时空动态过程。此类系统的最优控制通常涉及顺序决策。然而,传统的顺序决策方法不适用于优化涉及复杂三维几何形状的动态系统。仿真建模为评估替代决策选项和寻找最优计划提供了前所未有的机会。在本文中,我们开发了一种新颖的仿真优化框架,用于对三维动态系统进行顺序优化。我们首先提出使用相干性来衡量功能仿真输出之间的相似性,以评估决策行动的有效性。其次,我们通过基于豪斯多夫距离构建一个有效的核来开发一种新颖的高斯过程(GP)模型,以估计不同决策路径的相干性。最后,我们设计了一种新的蒙特卡罗树搜索(MCTS)算法,即正态-伽马GP MCTS(NG-GP-MCTS),以顺序优化时空动态。我们实现了NG-GP-MCTS算法,以设计一条从心房颤动(AF)恢复正常窦性心律(NSR)的最优消融路径。我们在三维心房几何形状中通过时空心脏仿真评估了NG-GP-MCTS的性能。计算机实验表明,我们的算法在设计有效的顺序程序以优化复杂几何形状中的时空动态方面具有很大的前景。