生物信息学工具在基因组生物标志物发现中的应用综述——推动精准肿瘤学发展

A Comprehensive Review of Bioinformatics Tools for Genomic Biomarker Discovery Driving Precision Oncology.

机构信息

Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA.

出版信息

Genes (Basel). 2024 Aug 6;15(8):1036. doi: 10.3390/genes15081036.

Abstract

The rapid advancement of high-throughput technologies, particularly next-generation sequencing (NGS), has revolutionized cancer research by enabling the investigation of genetic variations such as SNPs, copy number variations, gene expression, and protein levels. These technologies have elevated the significance of precision oncology, creating a demand for biomarker identification and validation. This review explores the complex interplay of oncology, cancer biology, and bioinformatics tools, highlighting the challenges in statistical learning, experimental validation, data processing, and quality control that underpin this transformative field. This review outlines the methodologies and applications of bioinformatics tools in cancer genomics research, encompassing tools for data structuring, pathway analysis, network analysis, tools for analyzing biomarker signatures, somatic variant interpretation, genomic data analysis, and visualization tools. Open-source tools and repositories like The Cancer Genome Atlas (TCGA), Genomic Data Commons (GDC), cBioPortal, UCSC Genome Browser, Array Express, and Gene Expression Omnibus (GEO) have emerged to streamline cancer omics data analysis. Bioinformatics has significantly impacted cancer research, uncovering novel biomarkers, driver mutations, oncogenic pathways, and therapeutic targets. Integrating multi-omics data, network analysis, and advanced ML will be pivotal in future biomarker discovery and patient prognosis prediction.

摘要

高通量技术的快速发展,特别是下一代测序(NGS),通过研究 SNP、拷贝数变异、基因表达和蛋白质水平等遗传变异,彻底改变了癌症研究。这些技术提高了精准肿瘤学的重要性,对生物标志物的识别和验证提出了需求。这篇综述探讨了肿瘤学、癌症生物学和生物信息学工具之间的复杂相互作用,强调了统计学习、实验验证、数据处理和质量控制方面的挑战,这些挑战是这个变革性领域的基础。本文概述了生物信息学工具在癌症基因组学研究中的方法和应用,包括用于数据结构、途径分析、网络分析、生物标志物特征分析、体细胞变异解释、基因组数据分析和可视化工具的工具。像癌症基因组图谱(TCGA)、基因组数据共享(GDC)、cBioPortal、UCSC 基因组浏览器、Array Express 和基因表达综合(GEO)这样的开源工具和存储库已经出现,以简化癌症组学数据分析。生物信息学已经对癌症研究产生了重大影响,揭示了新的生物标志物、驱动突变、致癌途径和治疗靶点。整合多组学数据、网络分析和先进的机器学习将是未来生物标志物发现和患者预后预测的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b16/11353282/f89830a97a68/genes-15-01036-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索