Paternò Giuseppe Maria
Physics Department, Politecnico Di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy.
Center for Nanoscience and Technology, Istituto Italiano Di Tecnologia, Via Rubattino 71, 20134 Milano, Italy.
MRS Commun. 2024;14(5):1027-1036. doi: 10.1557/s43579-024-00623-7. Epub 2024 Jul 31.
This perspective article focuses on the innovative field of materials-based bacterial engineering, highlighting interdisciplinary research that employs material science to study, augment, and exploit the attributes of living bacteria. By utilizing exogenous abiotic material interfaces, researchers can engineer bacteria to perform new functions, such as enhanced bioelectric capabilities and improved photosynthetic efficiency. Additionally, materials can modulate bacterial communities and transform bacteria into biohybrid microrobots, offering promising solutions for sustainable energy production, environmental remediation, and medical applications. Finally, the perspective discusses a general paradigm for engineering bacteria through the materials-driven modulation of their transmembrane potential. This parameter regulates their ion channel activity and ultimately their bioenergetics, suggesting that controlling it could allow scientists to hack the bioelectric language bacteria use for communication, task execution, and environmental response.
这篇观点文章聚焦于基于材料的细菌工程这一创新领域,突出了利用材料科学来研究、增强和利用活细菌特性的跨学科研究。通过利用外源性非生物材料界面,研究人员能够对细菌进行工程改造,使其执行新的功能,如增强生物电能力和提高光合效率。此外,材料可以调节细菌群落,并将细菌转化为生物杂交微型机器人,为可持续能源生产、环境修复和医学应用提供了有前景的解决方案。最后,该观点讨论了一种通过材料驱动调节细菌跨膜电位来对其进行工程改造的通用范式。这一参数调节它们的离子通道活性以及最终的生物能量学,这表明控制该参数可能使科学家破解细菌用于通信、任务执行和环境响应的生物电语言。