文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Effect of Reaction Parameters on the Synthesis of Cyclodextrin-Based Nanostructured Polymers for Drug Delivery.

作者信息

Salgın Sema, Eke Hasan Hüseyin, Soyer Nagihan, Salgın Uğur

机构信息

Department of Chemical Engineering, Faculty of Engineering, Sivas Cumhuriyet University, 58140 Sivas, Turkey.

Farma-Tek Pharmaceutical Industry and Trade Inc., 39100 Kırklareli, Turkey.

出版信息

Polymers (Basel). 2025 Mar 7;17(6):709. doi: 10.3390/polym17060709.


DOI:10.3390/polym17060709
PMID:40292530
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11944358/
Abstract

In this study, cyclodextrin-based nanostructures (CDNSs) were synthesized through the cross-linking of cyclodextrin (CD) with epichlorohydrin (ECH) as a cross-linker. Two types of CDNSs, α-CDNS and β-CDNS, were prepared to systematically investigate the influence of reaction parameters-such as the solubilization time of α-CD and β-CD, the molar ratio of ECH to CD, and NaOH concentration-on the physicochemical properties of the final product. Naproxen (NAP), a poorly water-soluble drug, was selected as a model compound to assess the drug-loading capacity of the synthesized CDNSs. The effect of each reaction parameter on NAP integration into the CDNSs was examined at varying weight ratios. The optimal reaction conditions were determined to be a solubilization time of 6 h, an ECH/CD molar ratio of 8/1, and an NaOH concentration of 33%. Under these conditions, the NAP loading efficiency of α-CDNSs was calculated as 67.12%. Comparative analysis revealed that α-CDNSs outperformed β-CDNSs in terms of drug-loading capacity. Additionally, the synthesized CDNSs and NAP-loaded CDNSs were characterized using FTIR, DSC, XRD, SEM, and Zetasizer analyses, while the NAP concentration was determined by HPLC.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/c087dd9d0644/polymers-17-00709-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/c1ca604828d3/polymers-17-00709-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/191f0af1dbb7/polymers-17-00709-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/73d90af51e51/polymers-17-00709-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/c4fcb33bf507/polymers-17-00709-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/003912873719/polymers-17-00709-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/9e108a38450f/polymers-17-00709-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/ac4f6c989f72/polymers-17-00709-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/2bc1357c0972/polymers-17-00709-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/bfdcb74597f8/polymers-17-00709-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/c087dd9d0644/polymers-17-00709-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/c1ca604828d3/polymers-17-00709-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/191f0af1dbb7/polymers-17-00709-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/73d90af51e51/polymers-17-00709-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/c4fcb33bf507/polymers-17-00709-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/003912873719/polymers-17-00709-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/9e108a38450f/polymers-17-00709-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/ac4f6c989f72/polymers-17-00709-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/2bc1357c0972/polymers-17-00709-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/bfdcb74597f8/polymers-17-00709-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/db1a/11944358/c087dd9d0644/polymers-17-00709-g009.jpg

相似文献

[1]
Effect of Reaction Parameters on the Synthesis of Cyclodextrin-Based Nanostructured Polymers for Drug Delivery.

Polymers (Basel). 2025-3-7

[2]
Exploring Cyclodextrin-Based Nanosponges as Drug Delivery Systems: Understanding the Physicochemical Factors Influencing Drug Loading and Release Kinetics.

Int J Mol Sci. 2024-3-20

[3]
Preparation and characterization of cyclodextrin nanosponges for bortezomib delivery.

Expert Opin Drug Deliv. 2020-12

[4]
Improved curcumin loading, release, solubility and toxicity by tuning the molar ratio of cross-linker to β-cyclodextrin.

Carbohydr Polym. 2019-2-22

[5]
A novel oral delivery system consisting in "drug-in cyclodextrin-in nanostructured lipid carriers" for poorly water-soluble drug: vinpocetine.

Int J Pharm. 2014-2-12

[6]
Development of a new delivery system consisting in "drug--in cyclodextrin--in nanostructured lipid carriers" for ketoprofen topical delivery.

Eur J Pharm Biopharm. 2011-8-4

[7]
Cationic β-cyclodextrin polymer applied to a dual cyclodextrin polyelectrolyte multilayer system.

Carbohydr Polym. 2015-3-18

[8]
Diversity of β-cyclodextrin-based nanosponges for transformation of actives.

Int J Pharm. 2019-5-10

[9]
Drug carrier systems based on water-soluble cationic beta-cyclodextrin polymers.

Int J Pharm. 2004-7-8

[10]
Drug delivery system based on cyclodextrin-naproxen inclusion complex incorporated in electrospun polycaprolactone nanofibers.

Colloids Surf B Biointerfaces. 2013-11-19

引用本文的文献

[1]
Cyclodextrins as Multifunctional Platforms in Drug Delivery and Beyond: Structural Features, Functional Applications, and Future Trends.

Molecules. 2025-7-20

本文引用的文献

[1]
Design, characterization, and evaluation of magnetic carboxymethylated β-cyclodextrin as a pH-sensitive carrier system for amantadine delivery: a novel approach for targeted drug delivery.

RSC Adv. 2025-1-3

[2]
Engineered Porous Beta-Cyclodextrin-Loaded Raloxifene Framework with Potential Anticancer Activity: Physicochemical Characterization, Drug Release, and Cytotoxicity Studies.

Int J Nanomedicine. 2024

[3]
Recent Advances in Cyclodextrin-Based Nanoscale Drug Delivery Systems.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024

[4]
Investigation of Host-Guest Inclusion Complex of Mephenesin with α-Cyclodextrin for Innovative Application in Biological System.

ACS Omega. 2024-8-15

[5]
New methods of modification of α-cyclodextrin.

Org Biomol Chem. 2024-9-11

[6]
Exploring Cyclodextrin-Based Nanosponges as Drug Delivery Systems: Understanding the Physicochemical Factors Influencing Drug Loading and Release Kinetics.

Int J Mol Sci. 2024-3-20

[7]
Nanosponge: A promising and intriguing strategy in medical and pharmaceutical Science.

Heliyon. 2023-12-6

[8]
Preparation and evaluation of βcyclodextrin-based nanosponges loaded with Budesonide for pulmonary delivery.

Int J Pharm. 2023-11-25

[9]
Cyclodextrin Inclusion Complexes for Improved Drug Bioavailability and Activity: Synthetic and Analytical Aspects.

Pharmaceutics. 2023-9-19

[10]
Cyclodextrins and Their Derivatives as Drug Stability Modifiers.

Pharmaceuticals (Basel). 2023-7-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索