Suppr超能文献

基于ZnO-MoS-TiO异质结构的高选择性室温蓝光LED增强型NO气体传感器

Highly Selective Room-Temperature Blue LED-Enhanced NO Gas Sensors Based on ZnO-MoS-TiO Heterostructures.

作者信息

Flores Soraya Y, Pacheco Elluz, Malca Carlos, Peng Xiaoyan, Chen Yihua, Zhou Badi, Pinero Dalice M, Diaz-Vazquez Liz M, Zhou Andrew F, Feng Peter X

机构信息

Department of Physics, University of Puerto Rico, San Juan, PR 00936, USA.

Department of Chemistry, University of Puerto Rico, San Juan, PR 00936, USA.

出版信息

Sensors (Basel). 2025 Mar 13;25(6):1781. doi: 10.3390/s25061781.

Abstract

This study presents the fabrication and characterization of highly selective, room-temperature gas sensors based on ternary zinc oxide-molybdenum disulfide-titanium dioxide (ZnO-MoS-TiO) nanoheterostructures. Integrating two-dimensional (2D) MoS with oxide nano materials synergistically combines their unique properties, significantly enhancing gas sensing performance. Comprehensive structural and chemical analyses, including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR), confirmed the successful synthesis and composition of the ternary nanoheterostructures. The sensors demonstrated excellent selectivity in detecting low concentrations of nitrogen dioxide (NO) among target gases such as ammonia (NH), methane (CH), and carbon dioxide (CO) at room temperature, achieving up to 58% sensitivity at 4 ppm and 6% at 0.1 ppm for NO. The prototypes demonstrated outstanding selectivity and a short response time of approximately 0.51 min. The impact of light-assisted enhancement was examined under 1 mW/cm weak ultraviolet (UV), blue, yellow, and red light-emitting diode (LED) illuminations, with the blue LED proving to deliver the highest sensor responsiveness. These results position ternary ZnO-MoS-TiO nanoheterostructures as highly sensitive and selective room-temperature NO gas sensors that are suitable for applications in environmental monitoring, public health, and industrial processes.

摘要

本研究介绍了基于三元氧化锌-二硫化钼-二氧化钛(ZnO-MoS-TiO)纳米异质结构的高选择性室温气体传感器的制备与表征。将二维(2D)MoS与氧化物纳米材料集成,协同结合了它们的独特性能,显著提高了气敏性能。包括扫描电子显微镜(SEM)、能量色散X射线光谱(EDX)、拉曼光谱和傅里叶变换红外光谱(FTIR)在内的综合结构和化学分析,证实了三元纳米异质结构的成功合成与组成。这些传感器在室温下对目标气体如氨(NH)、甲烷(CH)和二氧化碳(CO)中的低浓度二氧化氮(NO)表现出优异的选择性,在4 ppm时对NO的灵敏度高达58%,在0.1 ppm时为6%。原型展示了出色的选择性和约0.51分钟的短响应时间。在1 mW/cm的弱紫外(UV)、蓝色、黄色和红色发光二极管(LED)光照下研究了光辅助增强的影响,结果表明蓝色LED提供了最高的传感器响应性。这些结果表明三元ZnO-MoS-TiO纳米异质结构是高灵敏度和选择性的室温NO气体传感器,适用于环境监测、公共卫生和工业过程等应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/082a/11946553/831fa363910f/sensors-25-01781-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验