Govindaiah Arun, Bhuiyan Tasin, Smith R Theodore, Dhamoon Mandip S, Bhuiyan Alauddin
iHealthScreen Inc., Richmond Hill, NY 11418, USA.
Biomolecular Retinal Imaging, Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Sensors (Basel). 2025 Mar 19;25(6):1917. doi: 10.3390/s25061917.
Stroke is a leading cause of death and disability in developed countries. We validated an AI-based prediction model for incident stroke using sensors such as fundus cameras and ophthalmoscopes for retinal images, along with socio-demographic data and traditional risk factors. The model was trained on a proprietary dataset of over 6500 participants, including 171 with 5-year incident strokes and 242 with 10-year incident strokes. The model provides separate 5-year and 10-year risk scores. The model was externally validated on the UK Biobank dataset (3000 subjects with 5-year incident strokes). Using retinal imaging, our models identified individuals with 5-year incident strokes with 80% sensitivity, 82% specificity, and an AUC of 0.83, and predicted 10-year incidents with 72% sensitivity, 78% specificity, and an AUC of 0.79. In comparison, for the 10-year model, the AUC for the Framingham score was 0.73, and the CHADS2 score was 0.74. On the Biobank external dataset, our 5-year model (without retinal features) demonstrated moderate but lower sensitivity (69.3%) and specificity (66.4%) compared to its performance on the proprietary dataset (with retinal features). Using a multi-ethnic dataset, we developed and validated a prediction model that improves stroke risk identification for 5-year and 10-year incidences by incorporating retinal features.
中风是发达国家死亡和残疾的主要原因。我们使用眼底相机和检眼镜等传感器对视网膜图像进行分析,并结合社会人口统计学数据和传统风险因素,验证了一种基于人工智能的中风发病预测模型。该模型在一个拥有超过6500名参与者的专有数据集上进行训练,其中包括171名发生5年中风事件的患者和242名发生10年中风事件的患者。该模型提供单独的5年和10年风险评分。该模型在英国生物银行数据集(3000名发生5年中风事件的受试者)上进行了外部验证。通过视网膜成像,我们的模型识别出发生5年中风事件的个体,其灵敏度为80%,特异性为82%,曲线下面积(AUC)为0.83;预测10年中风事件时,灵敏度为72%,特异性为78%,AUC为0.79。相比之下,对于10年模型,弗雷明汉评分的AUC为0.73,CHADS2评分的AUC为0.74。在生物银行外部数据集上,我们的5年模型(不包括视网膜特征)与其在专有数据集(包括视网膜特征)上的表现相比,灵敏度(69.3%)和特异性(66.4%)适中但较低。我们使用一个多民族数据集开发并验证了一个预测模型,该模型通过纳入视网膜特征,提高了对5年和10年中风发病率的风险识别能力。