Pal Santanu, Chaturvedi Ekta, Das Chandni, Sinha Nibedita, Ahmed Tanbir, Roy Poulomi
CSIR - Central Mechanical Engineering Research Institute (CMERI), Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
Nanoscale. 2025 May 15;17(19):12094-12107. doi: 10.1039/d5nr00419e.
Efficient, low cost and stable electrocatalysts are highly desirable for overcoming the sluggish kinetics of the oxygen evolution reaction (OER) in alkaline water electrolysis for hydrogen production. Interfacial engineering of heterostructures is quite beneficial for improving charge transfer efficiency at the interface. In this context, heterostructures of layered triple hydroxides (LTHs) and MXenes have shown great potential as OER electrocatalysts owing to their 2D-2D structure and unique physiochemical properties. Coupling LTHs with MXenes can potentially enhance their conductivity and stability, thereby boosting OER activity. In this study, we report a heterointerface between NiFeMo-LTH on TiCT MXene, which exhibited superior catalytic activity and stability in alkaline freshwater and seawater, reducing the activation energy. Importantly, the heterostructure achieved a current density of 100 mA cm at the cost of 292 mV and 340 mV overpotentials in alkaline saline water and real seawater, respectively, and showed robustness over 100 h without hypochlorite formation in alkaline real seawater, exhibiting corrosion-resistant behaviour. Moreover, NiFeMo-LTH/MXene explored in alkaline anion exchange membrane water electrolyzer (AEMWE) achieved a current density of 750 mA cm at 2.16 V cell voltage at an operating temperature of 60 °C with an energy efficiency of 60.5%. Raman analysis and XPS analysis post stability test demonstrated easy electron transfer from LTH to MXene at the heterointerface, leading to the formation of NiOOH electroactive species that facilitated the OER activity.
高效、低成本且稳定的电催化剂对于克服碱性水电解制氢中析氧反应(OER)缓慢的动力学过程极为重要。异质结构的界面工程对于提高界面电荷转移效率非常有益。在此背景下,层状三元氢氧化物(LTHs)与MXenes的异质结构因其二维-二维结构和独特的物理化学性质,作为OER电催化剂展现出巨大潜力。将LTHs与MXenes耦合有可能提高其导电性和稳定性,从而增强OER活性。在本研究中,我们报道了TiCT MXene上的NiFeMo-LTH之间的异质界面,该异质界面在碱性淡水和海水中表现出优异的催化活性和稳定性,降低了活化能。重要的是,该异质结构在碱性盐水和实际海水中分别以292 mV和340 mV的过电位实现了100 mA cm的电流密度,并且在碱性实际海水中超过100小时保持稳健,无次氯酸盐形成,表现出耐腐蚀行为。此外,在碱性阴离子交换膜水电解槽(AEMWE)中探索的NiFeMo-LTH/MXene在60°C的工作温度下,在2.16 V的电池电压下实现了750 mA cm的电流密度,能量效率为60.5%。稳定性测试后的拉曼分析和XPS分析表明,在异质界面处电子易于从LTH转移到MXene,导致形成促进OER活性的NiOOH电活性物种。