Chen Siao, Xue Yurui, Gao Yang, Wu Han, Chen Siyi, Zheng Yunhao, Li Yuliang
CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
University of Chinese Academy of Sciences, Beijing, 100190, China.
Angew Chem Int Ed Engl. 2025 Jul;64(27):e202507269. doi: 10.1002/anie.202507269. Epub 2025 May 6.
Dynamic rearrangement of metal atoms at heterointerfaces by chemical bond conversion drives high efficiency electrocatalytic processes, which is a new concept in the field of electrocatalysis and a new discovery to directly improve catalytic activity. It is of great significance to explore transformative catalytic systems that directly control the interfacial structure and function of atomic composition. As an emerging 2D carbon allotrope featuring unique sp-sp co-hybridization, graphdiyne (GDY) offers unprecedented advantages for heterointerface engineering. In particular, the uneven surface charge distribution of GDY, high distribution of active sites and customizable electronic structures provide unprecedented opportunities for the development of a new generation of catalytic systems. Here, we report a new idea to directly control the cooperative growth and drive metal atomic rearrangement on the interface of GDY/NiPd/GDY. The results of atomic-resolution electron microscopy characterization revealed two unique interfacial phenomena: i) GDY-induced massive dislocation formation within NiPd nanoalloys and ii) rearrangement of surface metal atoms from (111) to (200) facets. Detailed spectroscopic analysis further demonstrated the composition-dependent evolution of elemental valence states and stoichiometric ratios. This atomic-level restructuring establishes a charge-redistribution network featuring non-integer charge transfer, which improves the overall conductivity and intrinsic activity. What is even more encouraging is that this electrocatalytic olefin hydrogenation is carried out in an aqueous solution. The GDY/NiPd/GDY heterostructure achieves exceptional activity (turnover frequency: 6.8 s), stability (>5 cycles), and chemo-selectivity (-100%), which is superior to traditional catalysts.
通过化学键转换实现异质界面处金属原子的动态重排驱动了高效的电催化过程,这是电催化领域的一个新概念,也是直接提高催化活性的一项新发现。探索直接控制原子组成的界面结构和功能的变革性催化体系具有重要意义。作为一种具有独特sp-sp共杂化的新兴二维碳同素异形体,石墨炔(GDY)为异质界面工程提供了前所未有的优势。特别是,GDY表面电荷分布不均、活性位点分布高且电子结构可定制,为新一代催化体系的发展提供了前所未有的机遇。在此,我们报告了一种直接控制GDY/NiPd/GDY界面上协同生长并驱动金属原子重排的新想法。原子分辨率电子显微镜表征结果揭示了两种独特的界面现象:i)GDY诱导NiPd纳米合金内部形成大量位错;ii)表面金属原子从(111)面重排至(200)面。详细的光谱分析进一步证明了元素价态和化学计量比随组成的演变。这种原子级的重构建立了一个具有非整数电荷转移的电荷再分布网络,提高了整体电导率和本征活性。更令人鼓舞的是,这种电催化烯烃加氢反应是在水溶液中进行的。GDY/NiPd/GDY异质结构具有卓越的活性(周转频率:6.8 s⁻¹)、稳定性(>5个循环)和化学选择性(-100%),优于传统催化剂。