Suppr超能文献

Bridge2AI语音应用程序:通过移动健康进行语音数据采集的初步可行性研究。

The Bridge2AI-voice application: initial feasibility study of voice data acquisition through mobile health.

作者信息

Moothedan Elijah, Boyer Micah, Watts Stephanie, Abdel-Aty Yassmeen, Ghosh Satrajit, Rameau Anaïs, Sigaras Alexandros, Elemento Olivier, Bensoussan Yael

机构信息

Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States.

USF Health Voice Center, Department of Otolaryngology-Head & Neck Surgery, University of South Florida, Tampa, FL, United States.

出版信息

Front Digit Health. 2025 Apr 15;7:1514971. doi: 10.3389/fdgth.2025.1514971. eCollection 2025.

Abstract

INTRODUCTION

Bridge2AI-Voice, a collaborative multi-institutional consortium, aims to generate a large-scale, ethically sourced voice, speech, and cough database linked to health metadata in order to support AI-driven research. A novel smartphone application, the Bridge2AI-Voice app, was created to collect standardized recordings of acoustic tasks, validated patient questionnaires, and validated patient reported outcomes. Before broad data collection, a feasibility study was undertaken to assess the viability of the app in a clinical setting through task performance metrics and participant feedback.

MATERIALS & METHODS: Participants were recruited from a tertiary academic voice center. Participants were instructed to complete a series of tasks through the application on an iPad. The Plan-Do-Study-Act model for quality improvement was implemented. Data collected included demographics and task metrics including time of completion, successful task/recording completion, and need for assistance. Participant feedback was measured by a qualitative interview adapted from the Mobile App Rating Scale.

RESULTS

Forty-seven participants were enrolled (61% female, 92% reported primary language of English, mean age of 58.3 years). All owned smart devices, with 49% using mobile health apps. Overall task completion rate was 68%, with acoustic tasks successfully recorded in 41% of cases. Participants requested assistance in 41% of successfully completed tasks, with challenges mainly related to design and instruction understandability. Interview responses reflected favorable perception of voice-screening apps and their features.

CONCLUSION

Findings suggest that the Bridge2AI-Voice application is a promising tool for voice data acquisition in a clinical setting. However, development of improved User Interface/User Experience and broader, diverse feasibility studies are needed for a usable tool.: 3.

摘要

引言

Bridge2AI-Voice是一个多机构合作联盟,旨在生成一个与健康元数据相关联的大规模、来源符合伦理的语音、言语和咳嗽数据库,以支持人工智能驱动的研究。创建了一款新颖的智能手机应用程序Bridge2AI-Voice应用,用于收集声学任务的标准化录音、经过验证的患者问卷以及经过验证的患者报告结果。在广泛收集数据之前,进行了一项可行性研究,以通过任务绩效指标和参与者反馈来评估该应用程序在临床环境中的可行性。

材料与方法

参与者从一家三级学术语音中心招募。指导参与者通过iPad上的应用程序完成一系列任务。实施了质量改进的计划-执行-研究-行动模型。收集的数据包括人口统计学信息和任务指标,如完成时间、任务/录音成功完成情况以及是否需要帮助。通过改编自移动应用评分量表的定性访谈来衡量参与者的反馈。

结果

招募了47名参与者(61%为女性,92%报告母语为英语,平均年龄58.3岁)。所有人都拥有智能设备,其中49%使用移动健康应用程序。总体任务完成率为68%,41%的案例中声学任务成功录制。41%成功完成的任务中参与者请求了帮助,挑战主要与设计和指令的可理解性有关。访谈回复反映了对语音筛查应用程序及其功能的良好看法。

结论

研究结果表明,Bridge2AI-Voice应用程序是临床环境中获取语音数据的一个有前景的工具。然而,需要改进用户界面/用户体验,并开展更广泛、多样的可行性研究,以使其成为一个可用的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aade/12037532/61033e0185e9/fdgth-07-1514971-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验