Suppr超能文献

人工智能与喉癌:从筛查到预后:最新综述

Artificial Intelligence and Laryngeal Cancer: From Screening to Prognosis: A State of the Art Review.

作者信息

Bensoussan Yael, Vanstrum Erik B, Johns Michael M, Rameau Anaïs

机构信息

Department of Otolaryngology-Head and Neck Surgery, University of South Florida, Tampa, Florida, USA.

Keck School of Medicine, University of Southern California, Los Angeles, California, USA.

出版信息

Otolaryngol Head Neck Surg. 2023 Mar;168(3):319-329. doi: 10.1177/01945998221110839. Epub 2023 Jan 29.

Abstract

OBJECTIVE

This state of the art review aims to examine contemporary advances in applications of artificial intelligence (AI) to the screening, detection, management, and prognostication of laryngeal cancer (LC).

DATA SOURCES

Four bibliographic databases were searched: PubMed, EMBASE, Cochrane, and IEEE.

REVIEW METHODS

A structured review of the current literature (up to January 2022) was performed. Search terms related to topics of AI in LC were identified and queried by 2 independent reviewers. Citations of selected studies and review articles were also evaluated to ensure comprehensiveness.

CONCLUSIONS

AI applications in LC have encompassed a variety of data modalities, including radiomics, genomics, acoustics, clinical data, and videomics, to support screening, diagnosis, therapeutic decision making, and prognosis. However, most studies remain at the proof-of-concept level, as AI algorithms are trained on single-institution databases with limited data sets and a single data modality.

IMPLICATIONS FOR PRACTICE

AI algorithms in LC will need to be trained on large multi-institutional data sets and integrate multimodal data for optimal performance and clinical utility from screening to prognosis. Out of the data types reviewed, genomics has the most potential to provide generalizable models thanks to available large multi-institutional open access genomic data sets. Voice acoustic data represent an inexpensive and accurate biomarker, which is easy and noninvasive to capture, offering a unique opportunity for screening and monitoring of LA, especially in low-resource settings.

摘要

目的

本综述旨在探讨人工智能(AI)在喉癌(LC)筛查、检测、管理和预后评估方面的当代进展。

数据来源

检索了四个文献数据库:PubMed、EMBASE、Cochrane和IEEE。

综述方法

对当前文献(截至2022年1月)进行结构化综述。由两名独立评审员确定并查询与LC中AI主题相关的检索词。还对所选研究和综述文章的参考文献进行了评估,以确保全面性。

结论

AI在LC中的应用涵盖了多种数据模式,包括放射组学、基因组学、声学、临床数据和视频组学,以支持筛查、诊断、治疗决策和预后评估。然而,大多数研究仍处于概念验证阶段,因为AI算法是在单机构数据库上进行训练的,数据集有限且数据模式单一。

对实践的启示

LC中的AI算法需要在大型多机构数据集上进行训练,并整合多模式数据,以实现从筛查到预后的最佳性能和临床应用价值。在所审查的数据类型中,由于有可用的大型多机构开放获取基因组数据集,基因组学最有潜力提供可推广的模型。语音声学数据是一种廉价且准确的生物标志物,易于且无创获取,为喉癌的筛查和监测提供了独特的机会,尤其是在资源匮乏的环境中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验