Suppr超能文献

通过集成多层聚类和机器学习模型分析与预测全球幸福指数

Analyzing and predicting global happiness index via integrated multilayer clustering and machine learning models.

作者信息

Yang Boxu, Xie Xiang

机构信息

School of Economics and Management, Beijing Jiaotong University, Beijing, China.

出版信息

PLoS One. 2025 Apr 30;20(4):e0322287. doi: 10.1371/journal.pone.0322287. eCollection 2025.

Abstract

This study addresses the research objective of predicting global happiness and identifying its key drivers. We propose a novel predictive framework that integrates unsupervised and supervised machine learning techniques to uncover the complex patterns underlying happiness scores across nations. Initially, we apply K-Means clustering to group countries based on similarities in their happiness patterns. For the first time, these cluster assignments are subsequently incorporated as additional features into ensemble learning models-specifically, Random Forests and XGBoost-to enhance the prediction of happiness scores. This hierarchical analysis approach yields a significant improvement in predictive performance, with an approximate 12% increase in R² compared to models that do not include clustering information. Using data from the World Happiness Report, our analysis reveals that global happiness can be categorized into three distinct groups (high, medium, and low). Among the various determinants examined, social support and GDP emerge as the most influential factors contributing to the happiness index. These findings not only advance the methodological framework for predicting happiness but also provide robust evidence for policymakers seeking to implement targeted interventions aimed at improving public well-being and promoting social progress.

摘要

本研究旨在实现预测全球幸福度并确定其关键驱动因素这一研究目标。我们提出了一种新颖的预测框架,该框架整合了无监督和有监督机器学习技术,以揭示各国幸福度得分背后的复杂模式。首先,我们应用K均值聚类算法,根据各国幸福模式的相似性对国家进行分组。这些聚类分配随后首次作为附加特征纳入集成学习模型——具体来说,是随机森林和XGBoost——以提高对幸福度得分的预测。这种分层分析方法在预测性能上有显著提升,与不包含聚类信息的模型相比,R² 提高了约12%。利用《世界幸福报告》的数据,我们的分析表明,全球幸福度可分为三个不同的组(高、中、低)。在所考察的各种决定因素中,社会支持和国内生产总值是对幸福指数影响最大的因素。这些发现不仅推进了预测幸福度的方法框架,也为寻求实施旨在改善公众福祉和促进社会进步的针对性干预措施的政策制定者提供了有力证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a0c/12043169/e3668066e219/pone.0322287.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验