Manzoor U, Mujica Roncery L, Raabe D, Souza Filho I R
Max Planck Institute for Sustainable Materials, Düsseldorf, Germany.
Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.
Nature. 2025 May;641(8062):365-373. doi: 10.1038/s41586-025-08901-7. Epub 2025 Apr 30.
Nickel is a critical element in the shift to sustainable energy systems, with the demand for nickel projected to exceed 6 million tons annually by 2040, largely driven by the electrification of the transport sector. Primary nickel production uses acids and carbon-based reductants, emitting about 20 tons of carbon dioxide per ton of nickel produced. Here we present a method using fossil-free hydrogen-plasma-based reduction to extract nickel from low-grade ore variants known as laterites. We bypass the traditional multistep process and combine calcination, smelting, reduction and refining into a single metallurgical step conducted in one furnace. This approach produces high-grade ferronickel alloys at fast reduction kinetics. Thermodynamic control of the atmosphere of the furnace enables selective nickel reduction, yielding an alloy with minimal impurities (<0.04 wt% silicon, approximately 0.01 wt% phosphorus and <0.09 wt% calcium), eliminating the need for further refining. The proposed method has the potential to be up to about 18% more energy efficient while cutting direct carbon dioxide emissions by up to 84% compared with current practice. Our work thus shows a sustainable approach to help resolve the contradiction between the beneficial use of nickel in sustainable energy technologies and the environmental harm caused by its production.
镍是向可持续能源系统转型中的关键元素,预计到2040年,镍的年需求量将超过600万吨,这主要是由交通运输部门的电气化推动的。原生镍生产使用酸和碳基还原剂,每吨镍产量会排放约20吨二氧化碳。在此,我们提出一种基于无化石氢等离子体还原的方法,用于从被称为红土矿的低品位矿石变体中提取镍。我们绕过了传统的多步骤工艺,将煅烧、熔炼、还原和精炼整合到在一个熔炉中进行的单一冶金步骤中。这种方法以快速的还原动力学生产出高品位的镍铁合金。对熔炉气氛进行热力学控制可实现选择性镍还原,得到杂质含量极低的合金(硅含量<0.04 wt%,磷含量约0.01 wt%,钙含量<0.09 wt%),无需进一步精炼。与当前做法相比,所提出的方法有可能提高约18%的能源效率,同时将直接二氧化碳排放量减少多达84%。因此,我们的工作展示了一种可持续的方法,有助于解决镍在可持续能源技术中的有益利用与其生产所造成的环境危害之间的矛盾。