Suppr超能文献

基于潜在图滤波的平滑多核k均值算法

Smooth Multiple Kernel k-Means via Underlying Graph Filtering.

作者信息

Yang Wenqi, Tang Chang, Liu Xinwang, Yue Guanghui, Liu Yuanyuan, Zhang Changqing, Zhu En

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Aug;36(8):14855-14868. doi: 10.1109/TNNLS.2025.3527120.

Abstract

Clustering has attracted more and more attention as one of the most fundamental techniques in the field of unsupervised learning. To deal with nonlinear problems, clustering methods have been extended to the kernel version. As a traditional kernel clustering algorithm, multiple kernel k-means (MKKM) aims to learn clustering results from a consensus kernel obtained by combining a set of predefined kernels optimally. However, we observe that the existing MKKM algorithm and its variants insufficiently consider the noise that existed in kernel space and the underlying structure of kernelized data points. To this end, we propose a novel smooth MKKM via underlying graph filtering (SMKKM-UGF) to learn the smooth representations of kernelized data points through their nearby nodes in the underlying graph. In particular, different from the common graph filter, we jointly update the graph filter while learning the smooth kernel, so that the graph filter can be guaranteed to adapt to the updating kernel space constantly. Besides, an iterative algorithm with proven convergence is designed to solve the resultant optimization problem. Extensive experiments have been performed on numerous benchmark datasets, whose results prove the superiority of the proposed SMKKM-UGF compared to the other state-of-the-art clustering methods. The demo code of this work is publicly available at https://github.com/wqyang23/SMKKM-UGF.git.

摘要

作为无监督学习领域最基本的技术之一,聚类已引起越来越多的关注。为了处理非线性问题,聚类方法已扩展到内核版本。作为一种传统的内核聚类算法,多核k均值(MKKM)旨在从通过最优组合一组预定义内核获得的共识内核中学习聚类结果。然而,我们观察到现有的MKKM算法及其变体没有充分考虑内核空间中存在的噪声以及内核化数据点的潜在结构。为此,我们提出了一种基于底层图滤波的新型平滑MKKM(SMKKM-UGF),通过其在底层图中的相邻节点来学习内核化数据点的平滑表示。特别是,与普通图滤波器不同,我们在学习平滑内核时联合更新图滤波器,从而保证图滤波器能够不断适应更新的内核空间。此外,设计了一种具有收敛性证明的迭代算法来解决由此产生的优化问题。在众多基准数据集上进行了大量实验,结果证明了所提出的SMKKM-UGF相对于其他现有聚类方法的优越性。这项工作的演示代码可在https://github.com/wqyang23/SMKKM-UGF.git上公开获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验