Suppr超能文献

一种基于改进YOLOv8s模型的轻量级无人机目标检测算法。

A lightweight UAV target detection algorithm based on improved YOLOv8s model.

作者信息

Ma Fubao, Zhang Ran, Zhu Bowen, Yang Xirui

机构信息

Communication and Network Laboratory, Dalian University, Dalian, 116622, China.

出版信息

Sci Rep. 2025 May 2;15(1):15352. doi: 10.1038/s41598-025-00341-7.

Abstract

Model lightweighting and efficiency are essential in UAV target recognition. Given the limited computational resources of UAVs and the system's high stability demands, existing complex models often do not meet practical application requirements. To tackle these challenges, this paper proposes LW-YOLOv8, a lightweight object detection algorithm based on the YOLOv8s model for UAV deployment. First, Cross Stage Partial Convolutional Neural Network (CNN) Transformer Fusion Net (CSP-CTFN) is proposed. It integrates convolutional neural networks and a multi-head self-attention (MHSA) mechanism, and achieves comprehensive global feature extraction through an expanded receptive field. Second, Parameter Shared Convolution Head (PSC-Head) is designed to enhance detection efficiency and further minimize model size. Furthermore, the original loss function is replaced with SIoU to enhance detection accuracy. Extensive experiments on the VisDrone2019 dataset show that the proposed model reduces parameters by 37.9%, computational cost by 22.8%, and model size by 36.9%, while improving AP, AP50, and AP75 by 0.2%, 0.2%, and 0.4%, respectively. The results indicate that the proposed model performs effectively in UAV recognition applications.

摘要

模型轻量化和效率在无人机目标识别中至关重要。鉴于无人机有限的计算资源以及系统对高稳定性的要求,现有的复杂模型往往无法满足实际应用需求。为应对这些挑战,本文提出了LW-YOLOv8,一种基于YOLOv8s模型的用于无人机部署的轻量化目标检测算法。首先,提出了跨阶段部分卷积神经网络(CNN)变换器融合网络(CSP-CTFN)。它集成了卷积神经网络和多头自注意力(MHSA)机制,并通过扩展的感受野实现全面的全局特征提取。其次,设计了参数共享卷积头(PSC-Head)以提高检测效率并进一步最小化模型大小。此外,用SIoU替换原始损失函数以提高检测精度。在VisDrone2019数据集上进行的大量实验表明,所提出的模型参数减少了37.9%,计算成本降低了22.8%,模型大小减小了36.9%,同时AP、AP50和AP75分别提高了0.2%、0.2%和0.4%。结果表明,所提出的模型在无人机识别应用中表现有效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/606b/12048629/4dbecb35dda3/41598_2025_341_Fig1_HTML.jpg

相似文献

1
A lightweight UAV target detection algorithm based on improved YOLOv8s model.
Sci Rep. 2025 May 2;15(1):15352. doi: 10.1038/s41598-025-00341-7.
3
Lightweight obstacle detection for unmanned mining trucks in open-pit mines.
Sci Rep. 2025 Mar 16;15(1):9028. doi: 10.1038/s41598-025-93639-5.
4
LCFF-Net: A lightweight cross-scale feature fusion network for tiny target detection in UAV aerial imagery.
PLoS One. 2024 Dec 19;19(12):e0315267. doi: 10.1371/journal.pone.0315267. eCollection 2024.
5
YOLOv8s-Longan: a lightweight detection method for the longan fruit-picking UAV.
Front Plant Sci. 2025 Jan 22;15:1518294. doi: 10.3389/fpls.2024.1518294. eCollection 2024.
6
YOLOv8-MPEB small target detection algorithm based on UAV images.
Heliyon. 2024 Apr 15;10(8):e29501. doi: 10.1016/j.heliyon.2024.e29501. eCollection 2024 Apr 30.
7
DRBD-YOLOv8: A Lightweight and Efficient Anti-UAV Detection Model.
Sensors (Basel). 2024 Nov 7;24(22):7148. doi: 10.3390/s24227148.
9
SRE-YOLOv8: An Improved UAV Object Detection Model Utilizing Swin Transformer and RE-FPN.
Sensors (Basel). 2024 Jun 17;24(12):3918. doi: 10.3390/s24123918.
10
A new lightweight network for efficient UAV object detection.
Sci Rep. 2024 Jun 10;14(1):13288. doi: 10.1038/s41598-024-64232-z.

本文引用的文献

1
UAV remote sensing applications in marine monitoring: Knowledge visualization and review.
Sci Total Environ. 2022 Sep 10;838(Pt 1):155939. doi: 10.1016/j.scitotenv.2022.155939. Epub 2022 May 13.
2
Contextual Transformer Networks for Visual Recognition.
IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):1489-1500. doi: 10.1109/TPAMI.2022.3164083. Epub 2023 Jan 6.
4
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.
IEEE Trans Pattern Anal Mach Intell. 2017 Jun;39(6):1137-1149. doi: 10.1109/TPAMI.2016.2577031. Epub 2016 Jun 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验