Abedi Ali, Chu Charlene H, Khan Shehroz S
KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Canada.
Lawrence Bloomberg Faculty of Nursing, University of Toronto, Toronto, Canada.
Sci Data. 2025 May 2;12(1):733. doi: 10.1038/s41597-025-05069-7.
Lower limb fractures (LLF) significantly impact older adults, leading to reduced mobility, prolonged recovery, and impaired independence. During recovery, older adults frequently face social isolation and functional decline, complicating rehabilitation and adversely affecting their physical and mental health. Multimodal sensor platforms that continuously collect data and analyze it using machine learning algorithms can remotely monitor this population and infer health outcomes. These platforms can also alert clinicians to individuals at risk of social isolation and functional decline. This paper presents a new publicly available multimodal sensor dataset, MAISON-LLF, collected from older adults recovering from LLF in community settings. The dataset includes data from smartphone and smartwatch sensors, motion detection sensors, sleep-tracking mattresses, and clinical questionnaires on social isolation and functional decline. The dataset was collected from ten older adults living alone at home for eight weeks each, totaling 560 days of 24-hour sensor data. For technical validation, machine learning algorithms were developed using the sensor and clinical questionnaire data, providing a foundational comparison for the research community.
下肢骨折(LLF)对老年人有显著影响,会导致行动能力下降、恢复时间延长和独立性受损。在恢复过程中,老年人经常面临社会隔离和功能衰退,这使康复变得复杂,并对他们的身心健康产生不利影响。多模态传感器平台可以持续收集数据并使用机器学习算法进行分析,从而对这一人群进行远程监测并推断健康结果。这些平台还可以提醒临床医生注意有社会隔离和功能衰退风险的个体。本文介绍了一个新的公开可用的多模态传感器数据集MAISON-LLF,该数据集是从在社区环境中从下肢骨折中恢复的老年人那里收集的。该数据集包括来自智能手机和智能手表传感器、运动检测传感器、睡眠跟踪床垫的数据,以及关于社会隔离和功能衰退的临床问卷。该数据集是从十位独自在家生活的老年人那里收集的,每位老年人收集八周,总共560天的24小时传感器数据。为了进行技术验证,利用传感器和临床问卷数据开发了机器学习算法,为研究界提供了一个基础比较。