Suppr超能文献

用于评估肝移植供体移植物的可解释机器学习

Explainable machine learning for the assessment of donor grafts in liver transplantation.

作者信息

Zhixing Liang, Linsen Ye, Peng Jiang, Siyi Dong, Haoyuan Yu, Kun Li, Siqi Li, Yongwei Hu, Mingshen Zhang, Wei Liu, Hua Li, Shuhong Yi, Guihua Chen, Xiao Xu, Shusen Zheng, Yang Yang

机构信息

Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.

Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.

出版信息

Hepatol Res. 2025 Jun;55(6):908-921. doi: 10.1111/hepr.14187. Epub 2025 Apr 4.

Abstract

BACKGROUND AND AIM

The shortage of liver grafts compared to recipients necessitates precise organ assessment. This study aimed to develop a Machine learning (ML) model to predict postoperative delayed graft function (DGF) and visualize the decision-making process for clinical application.

METHOD

Data from 5242 donor-recipient pairs who underwent liver transplantation (LT) at the top 10 liver transplant centers in China (January 2017 to December 2022) were collected. The dataset was divided into training and validation sets. Sixty-three variables, including demographics, donor characteristics, diagnosis, preoperative lab results, and surgical information were analyzed. The primary outcome was posttransplantation DGF and the second outcome was posttransplantation 1-month and 3-month survival. Recursive feature elimination selected critical variables, and models were built using ML algorithms and logistic regression. Model performance was evaluated by AUC, accuracy, sensitivity, and specificity. The best model was validated with an independent dataset of 394 LT cases (January to June 2023). The SHapley Additive exPlanations package interpreted the top model's decisions.

RESULTS

Among 5242 cases, 328 (6.26%) developed DGF, with 15 cases (3.81%) in the external validation set. Thirty critical features were selected. The eXtreme Gradient Boosting algorithm achieved the highest AUC (0.877) and accuracy (0.936) in the internal set, and a comparable AUC (0.776) and accuracy (0.957) in the external set. SHAP analysis identified short perfusion time, high donor serum sodium, excessive bleeding during transplantation, high donor γ-glutamyl transpeptidase, and blood glucose levels as top predictors of post-LT DGF. The proposed model AUC's 1-month survival prediction was 0.841 and the 3-month survival prediction was 0.834.

CONCLUSIONS

The developed model for predicting postoperative DGF demonstrated excellent predictive performance, aiding clinicians in evaluating donor grafts and making informed decisions.

摘要

背景与目的

与受体相比,肝移植供体短缺使得精确的器官评估成为必要。本研究旨在开发一种机器学习(ML)模型,以预测术后移植肝功能延迟恢复(DGF)并可视化临床应用中的决策过程。

方法

收集了中国排名前十的肝移植中心(2017年1月至2022年12月)5242对供受体进行肝移植(LT)的数据。数据集分为训练集和验证集。分析了63个变量,包括人口统计学、供体特征、诊断、术前实验室检查结果和手术信息。主要结局是移植后DGF,次要结局是移植后1个月和3个月的生存率。递归特征消除法选择关键变量,并使用ML算法和逻辑回归建立模型。通过AUC、准确性、敏感性和特异性评估模型性能。最佳模型在394例LT病例的独立数据集(2023年1月至6月)中进行验证。SHapley加性解释包解释顶级模型的决策。

结果

在5242例病例中,328例(6.26%)发生DGF,外部验证集中有15例(3.81%)。选择了30个关键特征。极端梯度提升算法在内部集中达到了最高的AUC(0.877)和准确性(0.936),在外部集中具有可比的AUC(0.776)和准确性(0.957)。SHAP分析确定灌注时间短、供体血清钠高、移植期间出血过多、供体γ-谷氨酰转肽酶高和血糖水平是LT后DGF的主要预测因素。所提出模型对1个月生存率预测的AUC为0.841,对3个月生存率预测的AUC为0.834。

结论

所开发的预测术后DGF的模型表现出优异的预测性能,有助于临床医生评估供体移植物并做出明智决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验