Obadinma Stephen, Lachana Alia, Norman Maia Leigh, Rankin Jocelyn, Yu Joanna, Zhu Xiaodan, Mastropaolo Darren, Pandya Deval, Sultan Roxana, Dolatabadi Elham
Electrical and Computer Engineering, Queen's University, 99 University Ave, Kingston, ON, Canada.
Vector Institute, W1140-108 College Street, Schwartz Reisman Innovation Campus, Toronto, ON, Canada.
NPJ Digit Med. 2025 May 3;8(1):243. doi: 10.1038/s41746-025-01647-6.
Frontline crisis support plays a critical role in youth mental health services, where Crisis Responders (CRs) engage in conversations and assign issue tags to guide interventions. To enhance this process, we introduce FAIIR (Frontline Assistant: Issue Identification and Recommendation), an ensemble of domain-adapted transformer models trained on 780,000 conversations. FAIIR aims to reduce CR's cognitive burden, enhance issue identification accuracy, and streamline post-conversation administrative tasks. Evaluated on retrospective data, FAIIR achieves an average AUC ROC of 94%, an average F1-score of 64%, and an average recall score of 81%. During the silent testing phase, its performance remained robust, with less than a 2% drop in all metrics. CRs exhibited 90.9% agreement with its predictions, and expert agreement with FAIIR exceeded their agreement with original labels. These findings highlight FAIIR's potential to assist CRs in prioritizing urgent cases and ensuring appropriate resource allocation in crisis interventions.
一线危机支持在青少年心理健康服务中发挥着关键作用,危机响应人员(CRs)在此过程中进行对话并分配问题标签以指导干预措施。为了改进这一过程,我们引入了FAIIR(一线助手:问题识别与推荐),这是一组在78万次对话上训练的领域适应变压器模型。FAIIR旨在减轻危机响应人员的认知负担,提高问题识别准确性,并简化对话后的管理任务。根据回顾性数据评估,FAIIR的平均AUC ROC为94%,平均F1分数为64%,平均召回率为81%。在静默测试阶段,其性能保持稳健,所有指标的下降幅度均不到2%。危机响应人员对其预测的认同率为90.9%,专家对FAIIR的认同超过了对原始标签的认同。这些发现凸显了FAIIR在协助危机响应人员对紧急情况进行优先级排序以及确保危机干预中资源合理分配方面的潜力。