Suppr超能文献

高熵硫化物催化快速充电水系锌硫电池中的速率决定氧化还原反应。

High-Entropy Sulfides Catalyze Rate-Determining Redox in Fast-Charging Aqueous Zinc-Sulfur Batteries.

作者信息

Liu Jiahao, Wu Han, Ye Chao, Qiao Shi-Zhang

机构信息

School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia.

出版信息

Angew Chem Int Ed Engl. 2025 Jul 7;64(28):e202503472. doi: 10.1002/anie.202503472. Epub 2025 May 13.

Abstract

The sluggish kinetics of the solid-solid Zn-S redox process significantly hinders the practical energy density and lifespan of fast-charging aqueous Zn-S batteries (AZSBs). Conventional low-entropy catalysts suffer from poor stability, leading to leaching effects and water splitting during cycling. To overcome these limitations, we present a three-step synthesis of high-entropy sulfide (HES) nanorod catalysts to accelerate the rate-determining step (RDS) in the Zn-S redox process. Operando synchrotron powder diffraction, operando synchrotron infrared reflectance microscopy, and operando Raman spectroscopy characterizations reveal that the HES catalysts improve sulfur utilization by accelerating the RDS conversion of ZnS to wurtzite ZnS. Furthermore, near-edge X-ray absorption fine structure and inductively coupled plasma mass spectrometry analyses demonstrate that the HES catalysts effectively suppress the leaching effect of transition metals and water splitting of the aqueous electrolyte, improving cycling stability. In contrast, utilizing medium- and low-entropy catalysts results in the formation of by-products, including S , S , and SO species. Consequently, the pouch cell with the HES catalysts delivers a high cathode energy density of 313 Wh kg and high cycling stability over 400 cycles at 4 C with 0.06% capacity decay per cycle. This entropy-driven catalytic strategy provides an effective approach for developing stable and fast-charging aqueous metal-sulfur batteries.

摘要

固-固锌-硫氧化还原过程缓慢的动力学显著阻碍了快速充电水系锌-硫电池(AZSBs)的实际能量密度和使用寿命。传统的低熵催化剂稳定性较差,在循环过程中会导致浸出效应和水分解。为克服这些限制,我们提出了一种三步合成高熵硫化物(HES)纳米棒催化剂的方法,以加速锌-硫氧化还原过程中的速率决定步骤(RDS)。原位同步辐射粉末衍射、原位同步辐射红外反射显微镜和原位拉曼光谱表征表明,HES催化剂通过加速ZnS向纤锌矿型ZnS的RDS转化来提高硫的利用率。此外,近边X射线吸收精细结构和电感耦合等离子体质谱分析表明,HES催化剂有效地抑制了过渡金属的浸出效应和水系电解质的水分解,提高了循环稳定性。相比之下,使用中熵和低熵催化剂会导致副产物的形成,包括S 、S 和SO 物种。因此,采用HES催化剂的软包电池在4 C下具有313 Wh kg的高阴极能量密度和超过400次循环的高循环稳定性,每次循环的容量衰减为0.06%。这种熵驱动的催化策略为开发稳定且快速充电的水系金属-硫电池提供了一种有效方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28ce/12232885/983784eb0dc0/ANIE-64-e202503472-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验