Suppr超能文献

使用决策树模型预测和评估老年人群的认知状态。

Predicting and Evaluating Cognitive Status in Aging Populations Using Decision Tree Models.

作者信息

Luo Zhidi, Wang Stella Ping, Ho Emily H, Yao Lihua, Gershon Richard C

机构信息

Health Sciences Integrated Program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.

Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.

出版信息

Am J Alzheimers Dis Other Demen. 2025 Jan-Dec;40:15333175251339730. doi: 10.1177/15333175251339730. Epub 2025 May 5.

Abstract

To improve the identification of cognitive impairment by distinguishing normal cognition (NC), mild cognitive impairment (MCI), and Alzheimer's disease (AD). A recursive partitioning tree model was developed using ARMADA data and the NIH Toolbox, a multidimensional health assessment tool. It incorporated demographic and clinical assessment variables to predict NC, MCI, and AD. Model performance was evaluated using AUC, precision, recall, and F1 score. Robustness was tested through 5-fold cross-validation, sensitivity, scenario, and subgroup analyses. The model achieved macro-AUC and micro-AUC scores of 0.92 and 0.91 (training) and 0.89 and 0.86 (testing). Key predictors included the Picture Sequence Memory Test and List Sorting Working Memory Test. Cross-validation yielded 70.22% accuracy and a Kappa of 0.52. Machine learning effectively uses a small set of assessments to distinguish NC, MCI, and AD, offering a valuable tool to support clinical decision-making. Future research should validate this model across diverse populations.

摘要

为了通过区分正常认知(NC)、轻度认知障碍(MCI)和阿尔茨海默病(AD)来改善对认知障碍的识别。使用ARMADA数据和多维健康评估工具NIH Toolbox开发了一种递归划分树模型。该模型纳入了人口统计学和临床评估变量,以预测NC、MCI和AD。使用曲线下面积(AUC)、精确率、召回率和F1分数评估模型性能。通过五折交叉验证、敏感性、情景和亚组分析测试模型的稳健性。该模型在训练时的宏AUC和微AUC分数分别为0.92和0.91,在测试时分别为0.89和0.86。关键预测指标包括图片序列记忆测试和列表排序工作记忆测试。交叉验证的准确率为70.22%,Kappa值为0.52。机器学习有效地利用一小部分评估来区分NC、MCI和AD,为支持临床决策提供了一个有价值的工具。未来的研究应在不同人群中验证该模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b202/12056332/e6e3c7ee9907/10.1177_15333175251339730-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验