Suppr超能文献

一种用于预测轻度和轻度认知障碍个体阿尔茨海默病转化的临床可转化机器学习算法。

A Clinically-Translatable Machine Learning Algorithm for the Prediction of Alzheimer's Disease Conversion in Individuals with Mild and Premild Cognitive Impairment.

作者信息

Grassi Massimiliano, Perna Giampaolo, Caldirola Daniela, Schruers Koen, Duara Ranjan, Loewenstein David A

机构信息

Department of Clinical Neurosciences, Hermanas Hospitalarias, Villa San Benedetto Menni Hospital, FoRiPsi, Albese con Cassano, Como, Italy.

Research Institute of Mental Health and Neuroscience and Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, University of Maastricht, Maastricht, Netherlands.

出版信息

J Alzheimers Dis. 2018;61(4):1555-1573. doi: 10.3233/JAD-170547.

Abstract

BACKGROUND

Available therapies for Alzheimer's disease (AD) can only alleviate and delay the advance of symptoms, with the greatest impact eventually achieved when provided at an early stage. Thus, early identification of which subjects at high risk, e.g., with MCI, will later develop AD is of key importance. Currently available machine learning algorithms achieve only limited predictive accuracy or they are based on expensive and hard-to-collect information.

OBJECTIVE

The current study aims to develop an algorithm for a 3-year prediction of conversion to AD in MCI and PreMCI subjects based only on non-invasively and effectively collectable predictors.

METHODS

A dataset of 123 MCI/PreMCI subjects was used to train different machine learning techniques. Baseline information regarding sociodemographic characteristics, clinical and neuropsychological test scores, cardiovascular risk indexes, and a visual rating scale for brain atrophy was used to extract 36 predictors. Leave-pair-out-cross-validation was employed as validation strategy and a recursive feature elimination procedure was applied to identify a relevant subset of predictors.

RESULTS

16 predictors were selected from all domains excluding sociodemographic information. The best model resulted a support vector machine with radial-basis function kernel (whole sample: AUC = 0.962, best balanced accuracy = 0.913; MCI sub-group alone: AUC = 0.914, best balanced accuracy = 0.874).

CONCLUSIONS

Our algorithm shows very high cross-validated performances that outperform the vast majority of the currently available algorithms, and all those which use only non-invasive and effectively assessable predictors. Further testing and optimization in independent samples will warrant its application in both clinical practice and clinical trials.

摘要

背景

阿尔茨海默病(AD)的现有治疗方法只能缓解和延缓症状进展,早期治疗效果最佳。因此,早期识别哪些高危人群(如轻度认知障碍患者)日后会发展为AD至关重要。目前可用的机器学习算法预测准确性有限,或者基于昂贵且难以收集的信息。

目的

本研究旨在开发一种算法,仅基于非侵入性且可有效收集的预测指标,对轻度认知障碍(MCI)和轻度认知障碍前期(PreMCI)患者未来3年发展为AD进行预测。

方法

使用123例MCI/PreMCI患者的数据集训练不同的机器学习技术。利用社会人口统计学特征、临床和神经心理学测试分数、心血管风险指标以及脑萎缩视觉评分量表等基线信息提取36个预测指标。采用留对交叉验证作为验证策略,并应用递归特征消除程序识别相关的预测指标子集。

结果

从所有领域(不包括社会人口统计学信息)中选择了16个预测指标。最佳模型为具有径向基函数核的支持向量机(全样本:曲线下面积[AUC]=0.962,最佳平衡准确率=0.913;仅MCI亚组:AUC=0.914,最佳平衡准确率=0.874)。

结论

我们的算法显示出非常高的交叉验证性能,优于绝大多数现有算法,以及所有仅使用非侵入性且可有效评估的预测指标的算法。在独立样本中进行进一步测试和优化将确保其在临床实践和临床试验中的应用。

相似文献

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验