Bartha Áron, Weltz Boglárka, Betancourt Lazaro Hiram, Gil Jeovanis, Pinto de Almeida Natália, Bianchini Giampaolo, Szeitz Beáta, Szadai Leticia, Pla Indira, Kemény Lajos V, Jánosi Ágnes Judit, Hong Runyu, Rajeh Ahmad, Nogueira Fábio, Doma Viktória, Woldmar Nicole, Guedes Jéssica, Újfaludi Zsuzsanna, Kim Yonghyo, Szarvas Tibor, Pahi Zoltan, Pankotai Tibor, Szasz A Marcell, Sanchez Aniel, Baldetorp Bo, Tímár József, Németh István Balázs, Kárpáti Sarolta, Appelqvist Roger, Domont Gilberto Barbosa, Pawlowski Krzysztof, Wieslander Elisabet, Malm Johan, Fenyo David, Horvatovich Peter, Marko-Varga György, Győrffy Balázs
Department of Bioinformatics, Semmelweis University, Budapest 1085, Hungary.
Department of Pediatrics, Semmelweis University, Budapest 1085, Hungary.
J Proteome Res. 2025 Jun 6;24(6):3117-3128. doi: 10.1021/acs.jproteome.4c00749. Epub 2025 May 5.
Using several melanoma proteomics data sets we created a single analysis platform that enables the discovery, knowledge build, and validation of diagnostic, predictive, and prognostic biomarkers at the protein level. Quantitative mass-spectrometry-based proteomic data was obtained from five independent cohorts, including 489 tissue samples from 394 patients with accompanying clinical metadata. We established an interactive R-based web platform that enables the comparison of protein levels across diverse cohorts, and supports correlation analysis between proteins and clinical metadata including survival outcomes. By comparing differential protein levels between metastatic, primary tumor, and nonmalignant samples in two of the cohorts, we identified 274 proteins showing significant differences among the sample types. Further analysis of these 274 proteins in lymph node metastatic samples from a third cohort revealed that 45 proteins exhibited a significant effect on patient survival. The three most significant proteins were HP (HR = 4.67, p = 2.8e-06), LGALS7 (HR = 3.83, p = 2.9e-05), and UBQLN1 (HR = 3.2, p = 4.8e-05). The user-friendly interactive web platform, accessible at https://www.tnmplot.com/melanoma, provides an interactive interface for the analysis of proteomic and clinical data. The MEL-PLOT platform, through its interactive capabilities, streamlines the creation of a comprehensive knowledge base, empowering hypothesis formulation and diligent monitoring of the most recent advancements in the domains of biomedical research and drug development.
利用多个黑色素瘤蛋白质组学数据集,我们创建了一个单一的分析平台,该平台能够在蛋白质水平上发现、构建知识并验证诊断、预测和预后生物标志物。基于定量质谱的蛋白质组学数据来自五个独立队列,包括来自394名患者的489个组织样本以及相关的临床元数据。我们建立了一个基于R的交互式网络平台,该平台能够比较不同队列中的蛋白质水平,并支持蛋白质与临床元数据(包括生存结果)之间的相关性分析。通过比较其中两个队列中转移样本、原发性肿瘤样本和非恶性样本之间的差异蛋白质水平,我们鉴定出274种在样本类型之间存在显著差异的蛋白质。对来自第三个队列的淋巴结转移样本中的这274种蛋白质进行进一步分析后发现,有45种蛋白质对患者生存有显著影响。其中最显著的三种蛋白质分别是HP(风险比=4.67,p=2.8×10⁻⁶)、LGALS7(风险比=3.83,p=2.9×10⁻⁵)和UBQLN1(风险比=3.2,p=4.8×10⁻⁵)。这个用户友好的交互式网络平台(网址为https://www.tnmplot.com/melanoma)为蛋白质组学和临床数据分析提供了一个交互式界面。MEL-PLOT平台通过其交互功能,简化了综合知识库的创建,有助于提出假设并密切关注生物医学研究和药物开发领域的最新进展。