Van Santvliet Lore, Zappon Elena, Gsell Matthias A F, Thaler Franz, Blondeel Maarten, Dymarkowski Steven, Claessen Guido, Willems Rik, Urschler Martin, Vandenberk Bert, Plank Gernot, De Vos Maarten
STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics, Department of Electrical Engineering (ESAT), KU Leuven, Kasteelpark Arenberg 10, Leuven, 3001, Belgium.
Division of Medical Physics and Biophysics, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
Comput Biol Med. 2025 Jun;192(Pt A):110230. doi: 10.1016/j.compbiomed.2025.110230. Epub 2025 May 4.
A cardiac digital twin is a virtual replica of a patient-specific heart, mimicking its anatomy and physiology. A crucial step of building a cardiac digital twin is anatomical twinning, where the computational mesh of the digital twin is tailored to the patient-specific cardiac anatomy. In a number of studies, the effect of anatomical variation on clinically relevant functional measurements like electrocardiograms (ECGs) is investigated, using computational simulations. While such a simulation environment provides researchers with a carefully controlled ground truth, the impact of anatomical differences on functional measurements in real-world patients remains understudied. In this study, we develop a biventricular statistical shape model and use it to quantify the effect of biventricular anatomy on ECG-derived and demographic features, providing novel insights for the development of digital twins of cardiac electrophysiology. To this end, a dataset comprising high-resolution cardiac CT scans from 271 healthy individuals, including athletes, is utilized. Furthermore, a novel, universal, ventricular coordinate-based method is developed to establish lightweight shape correspondence. The performance of the shape model is rigorously established, focusing on its dimensionality reduction capabilities and the training data requirements. The most important variability in healthy ventricles captured by the model is their size, followed by their elongation. These anatomical factors are found to significantly correlate with ECG-derived and demographic features. Additionally, a comprehensive synthetic cohort is made available, featuring ready-to-use biventricular meshes with fiber structures and anatomical region annotations. These meshes are well-suited for electrophysiological simulations.
心脏数字孪生是特定患者心脏的虚拟复制品,模仿其解剖结构和生理功能。构建心脏数字孪生的关键步骤是解剖孪生,即数字孪生的计算网格根据特定患者的心脏解剖结构进行定制。在一些研究中,使用计算模拟研究了解剖变异对心电图(ECG)等临床相关功能测量的影响。虽然这样的模拟环境为研究人员提供了精心控制的基本事实,但解剖差异对真实患者功能测量的影响仍未得到充分研究。在本研究中,我们开发了一种双心室统计形状模型,并使用它来量化双心室解剖结构对心电图衍生特征和人口统计学特征的影响,为心脏电生理学数字孪生的发展提供新的见解。为此,利用了一个包含271名健康个体(包括运动员)的高分辨率心脏CT扫描数据集。此外,还开发了一种新颖的、通用的基于心室坐标的方法来建立轻量级的形状对应关系。严格确定了形状模型的性能,重点关注其降维能力和训练数据要求。该模型捕获的健康心室中最重要的变异性是它们的大小,其次是它们的伸长率。发现这些解剖因素与心电图衍生特征和人口统计学特征显著相关。此外,还提供了一个全面的合成队列,其特点是具有纤维结构和解剖区域注释的即用型双心室网格。这些网格非常适合电生理模拟。